21 resultados para Análisede GAP
Resumo:
Gap junction channels are formed by paired oligomeric membrane hemichannels called connexons, which are composed of proteins of the connexin family. Experiments with transfected cell lines and paired Xenopus oocytes have demonstrated that heterotypic intercellular channels which are formed by two connexons, each composed of a different connexin, can selectively occur. Studies by Stauffer [Stauffer, K. A. (1995) J. Biol. Chem. 270, 6768-6772] have shown that recombinant Cx26 and Cx32 coinfected into insect cells may form heteromeric connexons. By solubilizing and subfractionating individual connexons from ovine lenses, we show by immunoprecipitation that connexons can contain two different connexins forming heteromeric assemblies in vivo.
Resumo:
We have constructed simian virus 40 minireplicons containing uniquely placed cis,syn-thymine dimers (T <> T) for the analysis of leading- and lagging-strand bypass replication. Assaying for replication in a human cell-free extract through the analysis of full-size labeled product molecules and restriction fragments spanning the T <> T site resulted in the following findings: (i) The primary site of synthesis blockage with T <> T in either the leading or lagging strand was one nucleotide before the lesion. (ii) Replicative bypass of T <> T was detected in both leading and lagging strands. The efficiency of synthesis past T <> T was 22% for leading-strand T <> T and 13% for lagging-strand T <> T. (iii) The lagging-strand T <> T resulted in blocked retrograde synthesis with the replication fork proceeding past the lesion, resulting in daughter molecules containing small gaps (form II' DNA). (iv) With T <> T in the leading-strand template, both the leading and lagging strands were blocked, representing a stalled replication fork. Uncoupling of the concerted synthesis of the two strands of the replication fork was observed, resulting in preferential elongation of the undamaged lagging strand. These data support a model of selective reinitiation downstream from the lesion on lagging strands due to Okazaki synthesis, with no reinitiation close to the damage site on leading strands [Meneghini, R. & Hanawalt, P.C. (1976) Biochim. Biophys. Acta 425, 428-437].
Resumo:
Herpes simplex virus thymidine kinase (HSV-tk)/ganciclovir (GCV) viral-directed enzyme prodrug gene therapy causes potent, tumor-selective cytotoxicity in animal models in which HSV-tk gene transduction is limited to a minority of tumor cells. The passage of toxic molecules from HSV-tk+ cells to neighboring HSV-tk- cells during GCV therapy is one mechanism that may account for this "bystander" cytotoxicity. To investigate whether gap junction-mediated intercellular coupling could mediate this bystander effect, we used a flow cytometry assay to quantitate the extent of heterocellular coupling between HSV-tk+ murine fibroblasts and both rodent and human tumor cell lines. Bystander tumor cytotoxicity during GCV treatment in a coculture assay was highly correlated (P < 0.001) with the extent of gap junction-mediated coupling. These findings show that gap junction-mediated intercellular coupling contributes to the in vitro bystander effect during HSV-tk/GCV therapy and that retroviral transduction of tumor cells is not required for bystander cytotoxicity.
Resumo:
Gap junctions are plaque-like clusters of intercellular channels that mediate intercellular communication. Each of two adjoining cells contains a connexon unit which makes up half of the whole channel. Gap junction channels are formed from a multigene family of proteins called connexins, and different connexins may be coexpressed by a single cell type and found within the same plaque. Rodent gap junctions contain two proteins, connexins 32 and 26. Use of a scanning transmission electron microscope for mass analysis of rodent gap junction plaques and split gap junctions prvided evidence consistent with a model in which the channels may be made from (i) solely connexin 26, (ii) solely connexin 32, or (iii) mixtures of connexin 26 and connexin 32 in which the two connexons are made entirely of connexin 26 and connexin 32. The different types of channels segregate into distinct domains, implying tha connexon channels self-associate to give a non-random distribution within tissues. Since each connexin confers distinct physiological properties on its membrane channels, these results imply that the physiological properties of channels can be tailored by mixing the constituent proteins within these macromolecular structures.
Resumo:
Levels and subcellular distribution of connexin 43 (Cx43), a gap junction protein, were studied in hamster leukocytes before and after activation with endotoxin (lipopolysaccharide, LPS) both in vitro and in vivo. Untreated leukocytes did not express Cx43. However, Cx43 was clearly detectable by indirect immunofluorescence in cells treated in vitro with LPS (1 micrograms/ml, 3 hr). Cx43 was also detected in leukocytes obtained from the peritoneal cavity 5-7 days after LPS-induced inflammation. In some leukocytes that formed clusters Cx43 immunoreactivity was present at appositional membranes, suggesting formation of homotypic gap junctions. In cell homogenates of activated peritoneal macrophages, Cx43, detected by Western blot analysis, was mostly unphosphorylated. A second in vivo inflammatory condition studied was that induced by ischemia-reperfusion of the hamster cheek pouch. In this system, leukocytes that adhered to venular endothelial cells after 1 hr of ischemia, followed by 1 hr of reperfusion, expressed Cx43. Electron microscope observations revealed small close appositions, putative gap junctions, at leukocyte-endothelial cell and leukocyte-leukocyte contacts. These results indicate that the expression of Cx43 can be induced in leukocytes during an inflammatory response which might allow for heterotypic or homotypic intercellular gap junctional communication. Gap junctions may play a role in leukocyte extravasation.