44 resultados para Agrobacterium mediated transformation
Resumo:
4-Hydroxyphenylpyruvate dioxygenase (4HPPD) catalyzes the formation of homogentisate (2,5-dihydroxyphenylacetate) from p-hydroxyphenylpyruvate and molecular oxygen. In plants this enzyme activity is involved in two distinct metabolic processes, the biosynthesis of prenylquinones and the catabolism of tyrosine. We report here the molecular and biochemical characterization of an Arabidopsis 4HPPD and the compartmentation of the recombinant protein in chlorophyllous tissues. We isolated a 1508-bp cDNA with one large open reading frame of 1338 bp. Southern analysis strongly suggested that this Arabidopsis 4HPPD is encoded by a single-copy gene. We investigated the biochemical characteristics of this 4HPPD by overproducing the recombinant protein in Escherichia coli JM105. The subcellular localization of the recombinant 4HPPD in chlorophyllous tissues was examined by overexpressing its complete coding sequence in transgenic tobacco (Nicotiana tabacum), using Agrobacterium tumefaciens transformation. We performed western analyses for the immunodetection of protein extracts from purified chloroplasts and total leaf extracts and for the immunocytochemistry on tissue sections. These analyses clearly revealed that 4HPPD was confined to the cytosol compartment, not targeted to the chloroplast. Western analyses confirmed the presence of a cytosolic form of 4HPPD in cultured green Arabidopsis cells.
The solution structure of the Raf-1 cysteine-rich domain: a novel ras and phospholipid binding site.
Resumo:
The Raf-1 protein kinase is the best-characterized downstream effector of activated Ras. Interaction with Ras leads to Raf-1 activation and results in transduction of cell growth and differentiation signals. The details of Raf-1 activation are unclear, but our characterization of a second Ras-binding site in the cysteine-rich domain (CRD) and the involvement of both Ras-binding sites in effective Raf-1-mediated transformation provides insight into the molecular aspects and consequences of Ras-Raf interactions. The Raf-1 CRD is a member of an emerging family of domains, many of which are found within signal transducing proteins. Several contain binding sites for diacylglycerol (or phorbol esters) and phosphatidylserine and are believed to play a role in membrane translocation and enzyme activation. The CRD from Raf-1 does not bind diacylglycerol but interacts with Ras and phosphatidylserine. To investigate the ligand-binding specificities associated with CRDs, we have determined the solution structure of the Raf-1 CRD using heteronuclear multidimensional NMR. We show that there are differences between this structure and the structures of two related domains from protein kinase C (PKC). The differences are confined to regions of the CRDs involved in binding phorbol ester in the PKC domains. Since phosphatidylserine is a common ligand, we expect its binding site to be located in regions where the structures of the Raf-1 and PKC domains are similar. The structure of the Raf-1 CRD represents an example of this family of domains that does not bind diacylglycerol and provides a framework for investigating its interactions with other molecules.
Resumo:
USF is a family of transcription factors characterized by a highly conserved basic-helix-loop-helix-leucine zipper (bHLH-zip) DNA-binding domain. Two different USF genes, termed USF1 and USF2, are ubiquitously expressed in both humans and mice. The USF1 and USF2 proteins contain highly divergent transcriptional activation domains but share extensive homologies in the bHLH-zip region and recognize the same CACGTG DNA motifs. Although the DNA-binding and transcriptional activities of these proteins have been characterized, the biological function of USF is not well understood. Here, focus- and colony-formation assays were used to investigate the potential involvement of USF in the regulation of cellular transformation and proliferation. Both USF1 and USF2 inhibited the transformation of rat embryo fibroblasts mediated by Ras and c-Myc, a bHLH-zip transcription factor that also binds CACGTG motifs. DNA binding was required but not fully sufficient for inhibition of Myc-dependent transformation by USF, since deletion mutants containing only the DNA-binding domains of USF1 or USF2 produced partial inhibition. While the effect of USF1 was selective for Myc-dependent transformation, wild-type USF2 exerted in addition a strong inhibition of E1A-mediated transformation and a strong suppression of HeLa cell colony formation. These results suggest that members of the USF family may serve as negative regulators of cellular proliferation in two ways, one by antagonizing the transforming function of Myc, the other through a more general growth-inhibitory effect.
Resumo:
A transposon based on the transposable element Minos from Drosophila hydei was introduced into the genome of Drosophila melanogaster using transformation mediated by the Minos transposase. The transposon carries a wild-type version of the white gene (w) of Drosophila inserted into the second exon of Minos. Transformation was obtained by injecting the transposon into preblastoderm embryos that were expressing transposase either from a Hsp70-Minos fusion inserted into the genome via P-element-mediated transformation or from a coinjected plasmid carrying the Hsp70-Minos fusion. Between 1% and 6% of the fertile injected individuals gave transformed progeny. Four of the insertions were cloned and the DNA sequences flanking the transposon ends were determined. The "empty" sites corresponding to three of the insertions were amplified from the recipient strain by PCR, cloned, and sequenced. In all cases, the transposon has inserted into a TA dinucleotide and has created the characteristic TA target site duplication. In the absence of transposase, the insertions were stable in the soma and the germ line. However, in the presence of the Hsp70-Minos gene the Minos-w transposon excises, resulting in mosaic eyes and germ-line reversion to the white phenotype. Minos could be utilized as an alternative to existing systems for transposon tagging and enhancer trapping in Drosophila; it might also be of use as a germ-line transformation vector for non-Drosophila insects.
Resumo:
The T-DNA transfer apparatus of Agrobacterium tumefaciens mediates the delivery of the T-DNA into plant cells, the transfer of the IncQ plasmid RSF1010 into plant cells, and the conjugal transfer of RSF1010 between Agrobacteria. We show in this report that the Agrobacterium-to-Agrobacterium conjugal transfer efficiencies of RSF1010 increase dramatically if the recipient strain, as well as the donor strain, carries a wild-type Ti plasmid and is capable of vir gene expression. Investigation of possible mechanisms that could account for this increased efficiency revealed that the VirB proteins encoded by the Ti plasmid were required. Although, with the exception of VirB1, all of the proteins that form the putative T-DNA transfer apparatus (VirB1–11, VirD4) are required for an Agrobacterium strain to serve as an RSF1010 donor, expression of only a subset of these proteins is required for the increase in conjugal transfer mediated by the recipient. Specifically, VirB5, 6, 11, and VirD4 are essential donor components but are dispensable for the increased recipient capacity. Defined point mutations in virB9 affected donor and recipient capacities to the same relative extent, suggesting that similar functions of VirB9 are important in both of these contexts.
Resumo:
Organization of transgenes in rice transformed through direct DNA transfer strongly suggests a two-phase integration mechanism. In the “preintegration” phase, transforming plasmid molecules (either intact or partial) are spliced together. This gives rise to rearranged transgenic sequences, which upon integration do not contain any interspersed plant genomic sequences. Subsequently, integration of transgenic DNA into the host genome is initiated. Our experiments suggest that the original site of integration acts as a hot spot, facilitating subsequent integration of successive transgenic molecules at the same locus. The resulting transgenic locus may have plant DNA separating the transgenic sequences. Our data indicate that transformation through direct DNA transfer, specifically particle bombardment, generally results in a single transgenic locus as a result of this two-phase integration mechanism. Transgenic plants generated through such processes may, therefore, be more amenable to breeding programs as the single transgenic locus will be easier to characterize genetically. Results from direct DNA transfer experiments suggest that in the absence of protein factors involved in exogenous DNA transfer through Agrobacterium, the qualitative and/or quantitative efficiency of transformation events is not compromised. Our results cast doubt on the role of Agrobacterium vir genes in the integration process.
Resumo:
T-DNA nuclear import is a central event in genetic transformation of plant cells by Agrobacterium. Presumably, the T-DNA transport intermediate is a single-stranded DNA molecule associated with two bacterial proteins, VirD2 and VirE2, which most likely mediate the transport process. While VirE2 cooperatively coats the transported single-stranded DNA, VirD2 is covalently attached to its 5′ end. To better understand the mechanism of VirD2 action, a cellular receptor for VirD2 was identified and its encoding gene cloned from Arabidopsis. The identified protein, designated AtKAPα, specifically bound VirD2 in vivo and in vitro. VirD2–AtKAPα interaction was absolutely dependent on the carboxyl-terminal bipartite nuclear localization signal sequence of VirD2. The deduced amino acid sequence of AtKAPα was homologous to yeast and animal nuclear localization signal-binding proteins belonging to the karyopherin α family. Indeed, AtKAPα efficiently rescued a yeast mutant defective for nuclear import. Furthermore, AtKAPα specifically mediated transport of VirD2 into the nuclei of permeabilized yeast cells.
Resumo:
The Ink4a/Arf locus encodes p16Ink4a and p19Arf and is among the most frequently mutated tumor suppressor loci in human cancer. In mice, many of these effects appear to be mediated by interactions between p19Arf and the p53 tumor-suppressor protein. Because Tp53 mutations are a common feature of the multistep pre-B cell transformation process mediated by Abelson murine leukemia virus (Ab-MLV), we examined the possibility that proteins encoded by the Ink4a/Arf locus also play a role in Abelson virus transformation. Analyses of primary transformants revealed that both p16Ink4a and p19Arf are expressed in many of the cells as they emerge from the apoptotic crisis that characterizes the transformation process. Analyses of primary transformants from Ink4a/Arf null mice revealed that these cells bypassed crisis. Because expression of p19Arf but not p16 Ink4a induced apoptosis in Ab-MLV-transformed pre-B cells, p19Arf appears to be responsible for these events. Consistent with the link between p19Arf and p53, Ink4a/Arf expression correlates with or precedes the emergence of cells expressing mutant p53. These data demonstrate that p19Arf is an important part of the cellular defense mounted against transforming signals from the Abl oncoprotein and provide direct evidence that the p19Arf–p53 regulatory loop plays an important role in lymphoma induction.
Resumo:
Agrobacterium tumefaciens is a soil phytopathogen that elicits neoplastic growths on the host plant species. In nature, however, Agrobacterium also may encounter organisms belonging to other kingdoms such as insects and animals that feed on the infected plants. Can Agrobacterium, then, also infect animal cells? Here, we report that Agrobacterium attaches to and genetically transforms several types of human cells. In stably transformed HeLa cells, the integration event occurred at the right border of the tumor-inducing plasmid's transferred-DNA (T-DNA), suggesting bona fide T-DNA transfer and lending support to the notion that Agrobacterium transforms human cells by a mechanism similar to that which it uses for transformation of plants cells. Collectively, our results suggest that Agrobacterium can transport its T-DNA to human cells and integrate it into their genome.
Resumo:
Signal transducer and activator of transcription (STAT) proteins perform key roles in mediating signaling by cytokines and growth factors, including platelet-derived growth factor (PDGF). In addition, Src family kinases activate STAT signaling and are required for PDGF-induced mitogenesis in normal cells. One STAT family member, Stat3, has been shown to have an essential role in cell transformation by the Src oncoprotein. However, the mechanisms by which STAT-signaling pathways contribute to mitogenesis and transformation are not fully defined. We show here that disruption of Stat3 signaling by using dominant-negative Stat3β protein in NIH 3T3 fibroblasts suppresses c-Myc expression concomitant with inhibition of v-Src-induced transformation. Ectopic expression of c-Myc is able to partially reverse this inhibition, suggesting that c-Myc is a downstream effector of Stat3 signaling in v-Src transformation. Furthermore, c-myc gene knockout fibroblasts are refractory to transformation by v-Src, consistent with a requirement for c-Myc protein in v-Src transformation. In normal NIH 3T3 cells, disruption of Stat3 signaling with dominant-negative Stat3β protein inhibits PDGF-induced mitogenesis in a manner that is reversed by ectopic c-Myc expression. Moreover, inhibition of Src family kinases with the pharmacologic agent, SU6656, blocks Stat3 activation by PDGF. These findings, combined together, delineate the signaling pathway, PDGF → Src → Stat3 → Myc, that is important in normal PDGF-induced mitogenesis and subverted in Src transformation.
Resumo:
Genetic transformation of Belgian endive (Cichorium intybus) and carrot (Daucus carota) by Agrobacterium rhizogenes resulted in a transformed phenotype, including annual flowering. Back-crossing of transformed (R1) endive plants produced a line that retained annual flowering in the absence of the other traits associated with A. rhizogenes transformation. Annualism was correlated with the segregation of a truncated transferred DNA (T-DNA) insertion. During vegetative growth, carbohydrate reserves accumulated normally in these annuals, and they were properly mobilized prior to anthesis. The effects of individual root-inducing left-hand T-DNA genes on flowering were tested in carrot, in which rolC (root locus) was the primary promoter of annualism and rolD caused extreme dwarfism. We discuss the possible adaptive significance of this attenuation of the phenotypic effects of root-inducing left-hand T-DNA.
Resumo:
The piggyBac (IFP2) short inverted terminal repeat transposable element from the cabbage looper Trichoplusia ni was tested for gene transfer vector function as part of a bipartite vector–helper system in the Mediterranean fruit fly Ceratitis capitata. A piggyBac vector marked with the medfly white gene was tested with a normally regulated piggyBac transposase helper at two different concentrations in a white eye host strain. Both experiments yielded transformants at an approximate frequency of 3–5%, with a total of six lines isolated having pigmented eyes with various levels of coloration. G1 transformant siblings from each line shared at least one common integration, with several sublines having an additional second integration. For the first transformant line isolated, two integrations were determined to be stable for 15 generations. For five of the lines, a piggyBac-mediated transposition was verified by sequencing the insertion site junctions isolated by inverse PCR that identified a characteristic piggyBac TTAA target site duplication. The efficient and stable transformation of the medfly with a lepidopteran vector represents transposon function over a relatively large evolutionary distance and suggests that the piggyBac system will be functional in a broad range of insects.
Resumo:
We describe a plant protoplast transformation method that provides transformants with a simple pattern of integration of a foreign gene. The approach is to deliver into plant protoplasts by direct gene transfer the Agrobacterium virulence genes virD1 and virD2 with or without virE2, together with a target plasmid containing a gene of interest flanked by Agrobacterium T-DNA border repeat sequences of 25 bp. We present evidence of T-DNA formation in maize protoplasts and its integration into the maize genome. The frequency of VirD1-VirD2-mediated integration events was about 20–35% of the total number of transformants. The addition of virE2 doubled the transformation efficiency. The method described here is of sufficient efficiency and simplicity to be useful for the production of transgenic plants with single-copy well-defined transgenic inserts.
Resumo:
Understanding how oncogenic transformation sensitizes cells to apoptosis may provide a strategy to kill tumor cells selectively. We previously developed a cell-free system that recapitulates oncogene dependent apoptosis as reflected by activation of caspases, the core of the apoptotic machinery. Here, we show that this activation requires a previously identified apoptosis-promoting complex consisting of caspase-9, APAF-1, and cytochrome c. As predicted by the in vitro system, preventing caspase-9 activation blocked drug-induced apoptosis in cells sensitized by E1A, an adenoviral oncogene. Oncogenes, such as E1A, appear to facilitate caspase-9 activation by several mechanisms, including the control of cytochrome c release from the mitochondria.
Resumo:
The v-jun oncogene encodes a nuclear DNA binding protein that functions as a transcription factor and is part of the activator protein 1 complex. Oncogenic transformation by v-jun is thought to be mediated by the aberrant expression of specific target genes. To identify such Jun-regulated genes and to explore the mechanisms by which Jun affects their expression, we have fused the full-length v-Jun and an amino-terminally truncated form of v-Jun to the hormone-binding domain of the human estrogen receptor. The two chimeric proteins function as ligand-inducible transactivators. Expression of the fusion proteins in chicken embryo fibroblasts causes estrogen-dependent transformation.