28 resultados para Agonist Binding
Resumo:
The phytochemical resveratrol, which is found in grapes and wine, has been reported to have a variety of anti-inflammatory, anti-platelet, and anti-carcinogenic effects. Based on its structural similarity to diethylstilbestrol, a synthetic estrogen, we examined whether resveratrol might be a phytoestrogen. At concentrations (≈3–10 μM) comparable to those required for its other biological effects, resveratrol inhibited the binding of labeled estradiol to the estrogen receptor and it activated transcription of estrogen-responsive reporter genes transfected into human breast cancer cells. This transcriptional activation was estrogen receptor-dependent, required an estrogen response element in the reporter gene, and was inhibited by specific estrogen antagonists. In some cell types (e.g., MCF-7 cells), resveratrol functioned as a superagonist (i.e., produced a greater maximal transcriptional response than estradiol) whereas in others it produced activation equal to or less than that of estradiol. Resveratrol also increased the expression of native estrogen-regulated genes, and it stimulated the proliferation of estrogen-dependent T47D breast cancer cells. We conclude that resveratrol is a phytoestrogen and that it exhibits variable degrees of estrogen receptor agonism in different test systems. The estrogenic actions of resveratrol broaden the spectrum of its biological actions and may be relevant to the reported cardiovascular benefits of drinking wine.
Resumo:
The peroxisome proliferator-activated receptors (PPARs) are dietary lipid sensors that regulate fatty acid and carbohydrate metabolism. The hypolipidemic effects of the fibrate drugs and the antidiabetic effects of the glitazone drugs in humans are due to activation of the α (NR1C1) and γ (NR1C3) subtypes, respectively. By contrast, the therapeutic potential of the δ (NR1C2) subtype is unknown, due in part to the lack of selective ligands. We have used combinatorial chemistry and structure-based drug design to develop a potent and subtype-selective PPARδ agonist, GW501516. In macrophages, fibroblasts, and intestinal cells, GW501516 increases expression of the reverse cholesterol transporter ATP-binding cassette A1 and induces apolipoprotein A1-specific cholesterol efflux. When dosed to insulin-resistant middle-aged obese rhesus monkeys, GW501516 causes a dramatic dose-dependent rise in serum high density lipoprotein cholesterol while lowering the levels of small-dense low density lipoprotein, fasting triglycerides, and fasting insulin. Our results suggest that PPARδ agonists may be effective drugs to increase reverse cholesterol transport and decrease cardiovascular disease associated with the metabolic syndrome X.
Resumo:
The majority of extracellular physiologic signaling molecules act by stimulating GTP-binding protein (G-protein)-coupled receptors (GPCRs). To monitor directly the formation of the active state of a prototypical GPCR, we devised a method to site specifically attach fluorescein to an endogenous cysteine (Cys-265) at the cytoplasmic end of transmembrane 6 (TM6) of the β2 adrenergic receptor (β2AR), adjacent to the G-protein-coupling domain. We demonstrate that this tag reports agonist-induced conformational changes in the receptor, with agonists causing a decline in the fluorescence intensity of fluorescein-β2AR that is proportional to the biological efficacy of the agonist. We also find that agonists alter the interaction between the fluorescein at Cys-265 and fluorescence-quenching reagents localized to different molecular environments of the receptor. These observations are consistent with a rotation and/or tilting of TM6 on agonist activation. Our studies, when compared with studies of activation in rhodopsin, indicate a general mechanism for GPCR activation; however, a notable difference is the relatively slow kinetics of the conformational changes in the β2AR, which may reflect the different energetics of activation by diffusible ligands.
Resumo:
A variety of GTP-binding protein (G protein)-coupled receptors are expressed at the nerve terminals of central synapses and play modulatory roles in transmitter release. At the calyx of Held, a rat auditory brainstem synapse, activation of presynaptic γ-aminobutyric acid type B receptors (GABAB receptors) or metabotropic glutamate receptors inhibits presynaptic P/Q-type Ca2+ channel currents via activation of G proteins, thereby attenuating transmitter release. To identify the heterotrimeric G protein subunits involved in this presynaptic inhibition, we loaded G protein βγ subunits (Gβγ) directly into the calyceal nerve terminal through whole-cell patch pipettes. Gβγ slowed the activation of presynaptic Ca2+ currents (IpCa) and attenuated its amplitude in a manner similar to the externally applied baclofen, a GABAB receptor agonist. The effects of both Gβγ and baclofen were relieved after strong depolarization of the nerve terminal. In addition, Gβγ partially occluded the inhibitory effect of baclofen on IpCa. In contrast, guanosine 5′-O-(3-thiotriphosphate)-bound Goα loaded into the calyx had no effect. Immunocytochemical examination revealed that the subtype of G proteins Go, but not the Gi, subtype, is expressed in the calyceal nerve terminal. These results suggest that presynaptic inhibition mediated by G protein-coupled receptors occurs primarily by means of the direct interaction of Go βγ subunits with presynaptic Ca2+ channels.
Resumo:
The coupling of agonist-activated seven transmembrane domain receptors to G proteins is known to involve the amino-terminal region of their third cytoplasmic loop. Analysis of the amino acids in this region of the rat type in angiotensin (AT1a) receptor identified Leu-222 as an essential residue in receptor activation by the physiological agonist, angiotensin II (Ang II). Nonpolar replacements for Leu-222 yielded functionally intact AT1 receptors, while polar or charged residues caused progressive impairment of Ang II-induced inositol phosphate generation. The decrease in agonist-induced signal generation was associated with a parallel reduction of receptor internalization, and was most pronounced for the Lys-222 mutant receptor. Although this mutant showed normal binding of the peptide antagonist, [Sar1,Ile6]Ang II, its affinity for Ang II was markedly reduced, consistent with its inability to adopt the high-affinity conformation. A search revealed that many Gq-coupled receptors contain an apolar amino acid (frequently leucine) in the position corresponding to Leu-222 of the AT1 receptor. These findings suggest that such a conserved apolar residue in the third intracellular loop is a crucial element in the agonist-induced activation of the AT1 and possibly many other G protein-coupled receptors.
Resumo:
To investigate the molecular mechanism for stereospecific binding of agonists to beta 2-adrenergic receptors we used receptor models to identify potential binding sites for the beta-OH-group of the ligand, which defines the chiral center. Ser-165, located in transmembrane helix IV, and Asn-293, situated in the upper half of transmembrane helix VI, were identified as potential binding sites. Mutation of Ser-165 to Ala did not change the binding of either isoproterenol isomer as revealed after transient expression in human embryonic kidney (HEK)-293 cells. In contrast, a receptor mutant in which Asn-293 was replaced by Leu showed substantial loss of stereospecific isoproterenol binding. Adenylyl cyclase stimulation by this mutant after stable expression in CHO cells confirmed the substantial loss of stereospecificity for isoproterenol. In a series of agonists the loss of affinity in the Leu-293 mutant receptor was strongly correlated with the intrinsic activity of the compounds. Full agonists showed a 10-30-fold affinity loss, whereas partial agonists had almost the same affinity for both receptors. Stereospecific recognition of antagonists was unaltered in the Leu-293 mutant receptor. These data indicate a relationship between stereospecificity and intrinsic activity of agonists and suggest that Asn-293 is important for both properties of the agonist-receptor interaction.
Resumo:
Ligands that bind to the allosteric-binding sites on muscarinic acetylcholine receptors alter the conformation of the classical-binding sites of these receptors and either diminish or increase their affinity for muscarinic agonists and classical antagonists. It is not known whether the resulting conformational change also affects the interaction between the receptors and the G proteins. We have now found that the muscarinic receptor allosteric modulators alcuronium, gallamine, and strychnine (acting in the absence of an agonist) alter the synthesis of cAMP in Chinese hamster ovary (CHO) cells expressing the M2 or the M4 subtype of muscarinic receptors in the same direction as the agonist carbachol. In addition, most of their effects on the production of inositol phosphates in CHO cells expressing the M1 or the M3 muscarinic receptor subtypes are also similar to (although much weaker than) those of carbachol. The agonist-like effects of the allosteric modulators are not observed in CHO cells that have not been transfected with the gene for any of the subtypes of muscarinic receptors. The effects of alcuronium on the formation of cAMP and inositol phosphates are not prevented by the classical muscarinic antagonist quinuclidinyl benzilate. These observations demonstrate for the first time that the G protein-mediated functional responses of muscarinic receptors can be evoked not only from their classical, but also from their allosteric, binding sites. This represents a new mechanism of receptor activation.
Resumo:
Previously, we have shown that agonists and antagonists interact with distinct, though overlapping regions within the human progesterone receptor (hPR) resulting in the formation of structurally different complexes. Thus, a link was established between the structure of a ligand-receptor complex and biological activity. In this study, we have utilized a series of in vitro assays with which to study hPR pharmacology and have identified a third class of hPR ligands that induce a receptor conformation which is distinct from that induced by agonists or antagonists. Importantly, when assayed on PR-responsive target genes these compounds were shown to exhibit partial agonist activity; an activity that was influenced by cell context. Thus, as has been shown previously for estrogen receptor, the overall structure of the ligand-receptor complex is influenced by the nature of the ligand. It appears, therefore, that the observed differences in the activity of some PR and estrogen receptor ligands reflect the ability of the cellular transcription machinery to discriminate between the structurally different complexes that result following ligand interaction. These data support the increasingly favored hypothesis that different ligands can interact with different regions within the hormone binding domains of steroid hormone receptors resulting in different biologies.
Resumo:
The purpose of this study was to identify guanine nucleotide-binding proteins (G proteins) involved in the agonist- and guanosine 5'-[gamma-thio]triphosphate (GTP[gamma-S])-induced increase in the Ca2+ sensitivity of 20-kDa myosin light chain (MLC20) phosphorylation and contraction in smooth muscle. A constitutively active, recombinant val14p21rhoA.GTP expressed in the baculovirus/Sf9 system, but not the protein expressed without posttranslational modification in Escherichia coli, induced at constant Ca2+ (pCa 6.4) a slow contraction associated with increased MLC20 phosphorylation from 19.8% to 29.5% (P < 0.05) in smooth muscle permeabilized with beta-esein. The effect of val14p21rhoA.GTP was inhibited by ADP-ribosylation of the protein and was absent in smooth muscle extensively permeabilized with Triton X-100. ADP-ribosylation of endogenous p21rho with epidermal cell differentiation inhibitor (EDIN) inhibited Ca2+ sensitization induced by GTP [in rabbit mesenteric artery (RMA) and rabbit ileum smooth muscles], by carbachol (in rabbit ileum), and by endothelin (in RMA), but not by phenylephrine (in RMA), and only slowed the rate without reducing the amplitude of contractions induced in RMA by 1 microM GTP[gamma-S] at constant Ca2+ concentrations. AlF(4-)-induced Ca2+ sensitization was inhibited by both guanosine 5'-[beta-thio]diphosphate (GDP[beta-S]) and by EDIN. EDIN also inhibited, to a lesser extent, contractions induced by Ca2+ alone (pCa 6.4) in both RMA and rabbit ileum. ADP-ribosylation of trimeric G proteins with pertussis toxin did not inhibit Ca2+ sensitization. We conclude that p21rho may play a role in physiological Ca2+ sensitization as a cofactor with other messengers, rather than as a sole direct inhibitor of smooth muscle MLC20 phosphatase.
Resumo:
The regulation of the dopamine D1 receptor was investigated by using c-myc epitope-tagged D1 receptors expressed in Sf9 (fall armyworm ovary) cells. Treatment of D1 receptors with 10 microM dopamine for 15 min led to a loss of the dopamine-detected high-affinity state of the receptor accompanying a 40% reduction in the ability of the receptor to mediate maximal dopamine stimulation of adenylyl cyclase activity. After 60 min of agonist exposure, 45 min after the occurrence of desensitization, 28% of the cell surface receptors were internalized into an intracellular light vesicular membrane fraction as determined by radioligand binding and supported by photoaffinity labeling, immunocytochemical staining, and immunoblot analysis. Pretreatment of cells with concanavalin A or sucrose completely blocked agonist-induced D1 receptor internalization without preventing agonist-induced desensitization, indicating a biochemical separation of these processes. Collectively, these findings indicate that the desensitization of D1 receptor-coupled adenylyl cyclase activity and D1 receptor internalization are temporarily and biochemically distinct mechanisms regulating D1 receptor function following agonist activation.
Resumo:
We describe a nonpeptide mimetic analog of an invertebrate peptide receptor. Benzethonium chloride (Bztc) is an agonist of the SchistoFLRFamide (PDVDHVFLRFamide) receptors found on locust oviducts. Bztc competitively displaces [125I-labeled Y1]SchistoFLRFamide binding to both high- and low-affinity receptors of membrane preparations. Bztc mimics the physiological effects of SchistoFLRFamide on locust oviduct, by inhibiting myogenic and induced contractions in a dose-dependent manner. Bztc is therefore recognized by the binding and activation regions of the SchistoFLRFamide receptors. This discovery provides a unique opportunity within insects to finally target a peptide receptor for the development of future pest management strategies.
Resumo:
The rat glucocorticoid receptor confers hormone-dependent transcriptional enhancement when expressed in yeast, thereby enabling the genetic identification of nonreceptor proteins that function in the hormone signal-transduction pathway. We isolated a yeast mutant, lem1, with increased sensitivity to dexamethasone and triamcinolone acetonide; responsiveness to a third agonist, deoxycorticosterone, is unaffected. Cloning of wild-type LEM1 revealed a putative transport protein of the ATP-binding cassette family. Dexamethasone accumulation is increased in lem1 cells, suggesting that wild-type LEM1 decreases dexamethasone potency by exporting this ligand. LEM1 appears to affect certain steroids and not others. We propose that transporters like LEM1 can selectively modulate the intracellular levels of steroid hormones. Differential activities of such transporters in mammalian cells might regulate hormone availability and thereby hormone signaling in a cell-type specific manner.
Resumo:
A systematic evaluation of structure-activity information led to the construction of genetically engineered interleukin 3 (IL-3) receptor agonists (synthokines) with enhanced hematopoietic potency. SC-55494, the most extensively characterized member of this series, exhibits 10- to 20-fold greater biological activity than recombinant human IL-3 (rhIL-3) in human hematopoietic cell proliferation and marrow colony-forming-unit assays. In contrast, SC-55494 is only twice as active as rhIL-3 in priming the synthesis of inflammatory mediators such as leukotriene C4 and triggering the release of histamine from peripheral blood leukocytes. The enhanced hematopoietic activity of SC-55494 correlates with a 60-fold increase in IL-3 alpha-subunit binding affinity and a 20-fold greater affinity for binding to alpha/beta receptor complexes on intact cells relative to rhIL-3. SC-55494 demonstrates a 5- to 10-fold enhanced hematopoietic response relative to its ability to activate the priming and release of inflammatory mediators. Therefore, SC-55494 may ameliorate the myeloablation of cancer therapeutic regimens while minimizing dose-limiting inflammatory side effects.