19 resultados para Adult life
Resumo:
We have investigated whether exposure to Gram-negative bacterial endotoxin in early neonatal life can alter neuroendocrine and immune regulation in adult animals. Exposure of neonatal rats to a low dose of endotoxin resulted in long-term changes in hypothalamic–pituitary–adrenal (HPA) axis activity, with elevated mean plasma corticosterone concentrations that resulted from increased corticosterone pulse frequency and pulse amplitude. In addition to this marked effect on the development of the HPA axis, neonatal endotoxin exposure had long-lasting effects on immune regulation, including increased sensitivity of lymphocytes to stress-induced suppression of proliferation and a remarkable protection from adjuvant-induced arthritis. These findings demonstrate a potent and long-term effect of neonatal exposure to inflammatory stimuli that can program major changes in the development of both neuroendocrine and immunological regulatory mechanisms.
Resumo:
Most demographic data indicate a roughly exponential increase in adult mortality with age, a phenomenon that has been explained in terms of a decline in the force of natural selection acting on age-specific mortality. Scattered demographic findings suggest the existence of a late-life mortality plateau in both humans and dipteran insects, seemingly at odds with both prior data and evolutionary theory. Extensions to the evolutionary theory of aging are developed which indicate that such late-life mortality plateaus are to be expected when enough late-life data are collected. This expanded theory predicts late-life mortality plateaus, with both antagonistic pleiotropy and mutation accumulation as driving population genetic mechanisms.
Resumo:
Few experiments have demonstrated a genetic correlation between the process of sexual selection and fitness benefits in offspring, either through female choice or male competition. Those that have looked at the relationship between female choice and offspring fitness have focused on juvenile fitness components, rather than fitness at later stages in the life cycle. In addition, many of these studies have not controlled for possible maternal effects. To test for a relationship between sexual selection and adult fitness, we carried out an artificial selection experiment in the fruit fly, Drosophila melanogaster. We created two treatments that varied in the level of opportunity for sexual selection. Increased opportunity for female choice and male competition was genetically correlated with an increase in adult survivorship, as well as an increase in male and female body size. Contrary to previous, single-generation studies, we did not find an increase in larval competitive ability. This study demonstrates that mate choice and/or male–male competition are correlated with an increase in at least one adult fitness component of offspring.
Resumo:
Polycystic kidney disease 1 (PKD1) is the major locus of the common genetic disorder autosomal dominant polycystic kidney disease. We have studied PKD1 mRNA, with an RNase protection assay, and found widespread expression in adult tissue, with high levels in brain and moderate signal in kidney. Expression of the PKD1 protein, polycystin, was assessed in kidney using monoclonal antibodies to a recombinant protein containing the C terminus of the molecule. In fetal and adult kidney, staining is restricted to epithelial cells. Expression in the developing nephron is most prominent in mature tubules, with lesser staining in Bowman's capsule and the proximal ureteric bud. In the nephrogenic zone, detectable signal was observed in comma- and S-shaped bodies as well as the distal branches of the ureteric bud. By contrast, uninduced mesenchyme and glomerular tufts showed no staining. In later fetal (>20 weeks) and adult kidney, strong staining persists in cortical tubules with moderate staining detected in the loops of Henle and collecting ducts. These results suggest that polycystin's major role is in the maintenance of renal epithelial differentiation and organization from early fetal life. Interestingly, polycystin expression, monitored at the mRNA level and by immunohistochemistry, appears higher in cystic epithelia, indicating that the disease does not result from complete loss of the protein.