62 resultados para Adrenergic receptor subtypes
Resumo:
The human β2-adrenergic receptor gene has multiple single-nucleotide polymorphisms (SNPs), but the relevance of chromosomally phased SNPs (haplotypes) is not known. The phylogeny and the in vitro and in vivo consequences of variations in the 5′ upstream and ORF were delineated in a multiethnic reference population and an asthmatic cohort. Thirteen SNPs were found organized into 12 haplotypes out of the theoretically possible 8,192 combinations. Deep divergence in the distribution of some haplotypes was noted in Caucasian, African-American, Asian, and Hispanic-Latino ethnic groups with >20-fold differences among the frequencies of the four major haplotypes. The relevance of the five most common β2-adrenergic receptor haplotype pairs was determined in vivo by assessing the bronchodilator response to β agonist in asthmatics. Mean responses by haplotype pair varied by >2-fold, and response was significantly related to the haplotype pair (P = 0.007) but not to individual SNPs. Expression vectors representing two of the haplotypes differing at eight of the SNP loci and associated with divergent in vivo responsiveness to agonist were used to transfect HEK293 cells. β2-adrenergic receptor mRNA levels and receptor density in cells transfected with the haplotype associated with the greater physiologic response were ≈50% greater than those transfected with the lower response haplotype. The results indicate that the unique interactions of multiple SNPs within a haplotype ultimately can affect biologic and therapeutic phenotype and that individual SNPs may have poor predictive power as pharmacogenetic loci.
Resumo:
Stimulation of β-adrenergic receptors (BAR) by clenbuterol (CLE) increases nerve growth factor (NGF) biosynthesis in the rat cerebral cortex but not in other regions of the brain. We have explored the transcription mechanisms that may account for the cortex-specific activation of the NGF gene. Although the NGF promoter contains an AP-1 element, AP-1-binding activity in the cerebral cortex was not induced by CLE, suggesting that other transcription factors govern the brain area-specific induction of NGF. Because BAR activation increases cAMP levels, we examined the role of CCAAT/enhancer-binding proteins (C/EBP), some of which are known to be cAMP-inducible. In C6–2B glioma cells, whose NGF expression is induced by BAR agonists, (i) CLE increased C/EBPδ-binding activity, (ii) NGF mRNA levels were increased by overexpressing C/EBPδ, and (iii) C/EBPδ increased the activity of an NGF promoter–reporter construct. Moreover, DNase footprinting and deletion analyses identified a C/EBPδ site in the proximal region of the NGF promoter. C/EBPδ appears to be responsible for the BAR-mediated activation of the NGF gene in vivo, since CLE elicited a time-dependent increase in C/EBPδ-binding activity in the cerebral cortex only. Our data suggest that, while AP-1 may regulate basal levels of NGF expression, C/EBPδ is a critical component determining the area-specific expression of NGF in response to BAR stimulation.
Resumo:
The majority of extracellular physiologic signaling molecules act by stimulating GTP-binding protein (G-protein)-coupled receptors (GPCRs). To monitor directly the formation of the active state of a prototypical GPCR, we devised a method to site specifically attach fluorescein to an endogenous cysteine (Cys-265) at the cytoplasmic end of transmembrane 6 (TM6) of the β2 adrenergic receptor (β2AR), adjacent to the G-protein-coupling domain. We demonstrate that this tag reports agonist-induced conformational changes in the receptor, with agonists causing a decline in the fluorescence intensity of fluorescein-β2AR that is proportional to the biological efficacy of the agonist. We also find that agonists alter the interaction between the fluorescein at Cys-265 and fluorescence-quenching reagents localized to different molecular environments of the receptor. These observations are consistent with a rotation and/or tilting of TM6 on agonist activation. Our studies, when compared with studies of activation in rhodopsin, indicate a general mechanism for GPCR activation; however, a notable difference is the relatively slow kinetics of the conformational changes in the β2AR, which may reflect the different energetics of activation by diffusible ligands.
Resumo:
Single-molecule studies of the conformations of the intact β2 adrenergic receptor were performed in solution. Photon bursts from the fluorescently tagged adrenergic receptor in a micelle were recorded. A photon-burst algorithm and a Poisson time filter were implemented to characterize single molecules diffusing across the probe volume of a confocal microscope. The effects of molecular diffusion and photon number fluctuations were deconvoluted by assuming that Poisson distributions characterize the molecular occupation and photon numbers. Photon-burst size histograms were constructed, from which the source intensity distributions were extracted. Different conformations of the β2 adrenergic receptor cause quenching of the bound fluorophore to different extents and hence produce different photon-burst sizes. An analysis of the photon-burst histograms shows that there are at least two distinct substates for the native adrenergic membrane receptor. This behavior is in contrast to one peak observed for the dye molecule, rhodamine 6G. We test the reliability and robustness of the substate number determination by investigating the application of different binning criteria. Conformational changes associated with agonist binding result in a marked change in the distribution of photon-burst sizes. These studies provide insight into the conformational heterogeneity of G protein-coupled receptors in the presence and absence of a bound agonist.
Resumo:
A threonine to isoleucine polymorphism at amino acid 164 in the fourth transmembrane spanning domain of the beta 2-adrenergic receptor (beta 2AR) is known to occur in the human population. The functional consequences of this polymorphism to catecholamine signaling in relevant cells or to end-organ responsiveness, however, are not known. To explore potential differences between the two receptors, site-directed mutagenesis was carried out to mimic the polymorphism. Transgenic FVB/N mice were then created overexpressing wild-type (wt) beta 2AR or the mutant Ile-164 receptor in a targeted manner in the heart using a murine alpha myosin heavy chain promoter. The functional properties of the two receptors were then assessed at the level of in vitro cardiac myocyte signaling and in vivo cardiac responses in intact animals. The expression levels of these receptors in the two lines chosen for study were approximately 1200 fmol/mg protein in cardiac membranes, which represents a approximately 45-fold increase in expression over endogenous beta AR. Myocyte membrane adenylyl cyclase activity in the basal state was significantly lower in the Ile-164 mice (19.5 +/- 2.7 pmol/min/mg) compared with wt beta 2AR mice (35.0 +/- 4.1 pmol/min/mg), as was the maximal isoproterenol-stimulated activity (49.8 +/- 7.8 versus 77.1 +/ 7.3 pmol/min/mg). In intact animals, resting heart rate (441 +/- 21 versus 534 +/- 17 bpm) and dP/dtmax (10,923 +/- 730 versus 15,308 +/- 471 mmHg/sec) were less in the Ile-164 mice as compared with wt beta 2AR mice. Similarly, the physiologic responses to infused isoproterenol were notably less in the mutant expressing mice. Indeed, these values, as well as other contractile parameters, were indistinguishable between Ile-164 mice and nontransgenic littermates. Taken together, these results demonstrate that the Ile-164 polymorphism is substantially dysfunctional in a relevant target tissue, as indicated by depressed receptor coupling to adenylyl cyclase in myocardial membranes and impaired receptor mediated cardiac function in vivo. Under normal homeostatic conditions or in circumstances where sympathetic responses are compromised due to diseased states, such as heart failure, this impairment may have important pathophysiologic consequences.
Resumo:
To investigate the molecular mechanism for stereospecific binding of agonists to beta 2-adrenergic receptors we used receptor models to identify potential binding sites for the beta-OH-group of the ligand, which defines the chiral center. Ser-165, located in transmembrane helix IV, and Asn-293, situated in the upper half of transmembrane helix VI, were identified as potential binding sites. Mutation of Ser-165 to Ala did not change the binding of either isoproterenol isomer as revealed after transient expression in human embryonic kidney (HEK)-293 cells. In contrast, a receptor mutant in which Asn-293 was replaced by Leu showed substantial loss of stereospecific isoproterenol binding. Adenylyl cyclase stimulation by this mutant after stable expression in CHO cells confirmed the substantial loss of stereospecificity for isoproterenol. In a series of agonists the loss of affinity in the Leu-293 mutant receptor was strongly correlated with the intrinsic activity of the compounds. Full agonists showed a 10-30-fold affinity loss, whereas partial agonists had almost the same affinity for both receptors. Stereospecific recognition of antagonists was unaltered in the Leu-293 mutant receptor. These data indicate a relationship between stereospecificity and intrinsic activity of agonists and suggest that Asn-293 is important for both properties of the agonist-receptor interaction.
Resumo:
The beta-adrenergic receptor kinase (betaARK) is the prototypical member of the family of cytosolic kinases that phosphorylate guanine nucleotide binding-protein-coupled receptors and thereby trigger uncoupling between receptors and guanine nucleotide binding proteins. Herein we show that this kinase is subject to phosphorylation and regulation by protein kinase C (PKC). In cell lines stably expressing alpha1B- adrenergic receptors, activation of these receptors by epinephrine resulted in an activation of cytosolic betaARK. Similar data were obtained in 293 cells transiently coexpressing alpha1B- adrenergic receptors and betaARK-1. Direct activation of PKC with phorbol esters in these cells caused not only an activation of cytosolic betaARK-1 but also a translocation of betaARK immunoreactivity from the cytosol to the membrane fraction. A PKC preparation purified from rat brain phospborylated purified recombinant betaARK-1 to a stoichiometry of 0.86 phosphate per betaARK-1. This phosphorylation resulted in an increased activity of betaARK-1 when membrane-bound rhodopsin served as its substrate but in no increase of its activity toward a soluble peptide substrate. The site of phosphorylation was mapped to the C terminus of betaARK-1. We conclude that PKC activates betaARK by enhancing its translocation to the plasma membrane.
Resumo:
A capillary electrophoresis system with single-cell biosensors as a detector has been used to separate and identify ligands in complex biological samples. The power of this procedure was significantly increased by introducing antagonists that inhibited the cellular response from selected ligand-receptor interactions. The single-cell biosensor was based on the ligand-receptor binding and G-protein-mediated signal transduction pathways in PC12 and NG108-15 cell lines. Receptor activation was measured as increases in cytosolic free calcium ion concentration by using fluorescence microscopy with the intracellular calcium ion indicator fluo-3-acetoxymethyl ester. Specifically, a mixture of bradykinin (BK) and acetylcholine (ACh) was fractionated and the components were identified by inhibiting the cellular response with icatibant (HOE 140), a selective antagonist to the BK B2 receptor subtype (B2BK), and atropine, an antagonist to muscarinic ACh receptor subtypes. Structurally related forms of BK were also identified based on inhibiting B2BK receptors. Applications of this technique include identification of endogenous BK in a lysate of human hepatocellular carcinoma cells (Hep G2) and screening for bioactivity of BK degradation products in human blood plasma. The data demonstrate that the use of antagonists with a single-cell biosensor separation system aids identification of separated components and receptor subtypes.
Resumo:
The goal of this study was to determine whether β1-adrenergic receptor (AR) and β2-AR differ in regulating cardiomyocyte survival and apoptosis and, if so, to explore underlying mechanisms. One potential mechanism is that cardiac β2-AR can activate both Gs and Gi proteins, whereas cardiac β1-AR couples only to Gs. To avoid complicated crosstalk between β-AR subtypes, we expressed β1-AR or β2-AR individually in adult β1/β2-AR double knockout mouse cardiac myocytes by using adenoviral gene transfer. Stimulation of β1-AR, but not β2-AR, markedly induced myocyte apoptosis, as indicated by increased terminal deoxynucleotidyltransferase-mediated UTP end labeling or Hoechst staining positive cells and DNA fragmentation. In contrast, β2-AR (but not β1-AR) stimulation elevated the activity of Akt, a powerful survival signal; this effect was fully abolished by inhibiting Gi, Gβγ, or phosphoinositide 3 kinase (PI3K) with pertussis toxin, βARK-ct (a peptide inhibitor of Gβγ), or LY294002, respectively. This indicates that β2-AR activates Akt via a Gi-Gβγ-PI3K pathway. More importantly, inhibition of the Gi-Gβγ-PI3K-Akt pathway converts β2-AR signaling from survival to apoptotic. Thus, stimulation of a single class of receptors, β2-ARs, elicits concurrent apoptotic and survival signals in cardiac myocytes. The survival effect appears to predominate and is mediated by the Gi-Gβγ-PI3K-Akt signaling pathway.
Resumo:
Oleamide is an endogenous fatty acid primary amide that possesses sleep-inducing properties in animals and that has been shown to effect serotonergic receptor responses and block gap junction communication. Herein, the potentiation of the 5-HT1A receptor response is disclosed, and a study of the structural features of oleamide required for potentiation of the 5-HT2A and 5-HT1A response to serotonin (5-HT) is described. Of the naturally occurring fatty acids, the primary amide of oleic acid (oleamide) is the most effective at potentiating the 5-HT2A receptor response. The structural features required for activity were found to be highly selective. The presence, position, and stereochemistry of the Δ9-cis double bond is required, and even subtle structural variations reduce or eliminate activity. Secondary or tertiary amides may replace the primary amide but follow a well defined relationship requiring small amide substituents, suggesting that the carboxamide serves as a hydrogen bond acceptor but not donor. Alternative modifications at the carboxamide as well as modifications of the methyl terminus or the hydrocarbon region spanning the carboxamide and double bond typically eliminate activity. A less extensive study of the 5-HT1A potentiation revealed that it is more tolerant and accommodates a wider range of structural modifications. An interesting set of analogs was identified that inhibit rather than potentiate the 5-HT2A, but not the 5-HT1A, receptor response, further suggesting that such analogs may permit the selective modulation of serotonin receptor subtypes and even have opposing effects on the different subtypes.
Resumo:
To investigate the contribution of individual serotonin (5-hydroxytryptamine; 5-HT) receptors to mood control, we have used homologous recombination to generate mice lacking specific serotonergic receptor subtypes. In the present report, we demonstrate that mice without 5-HT1A receptors display decreased exploratory activity and increased fear of aversive environments (open or elevated spaces). 5-HT1A knockout mice also exhibited a decreased immobility in the forced swim test, an effect commonly associated with antidepressant treatment. Although 5-HT1A receptors are involved in controlling the activity of serotonergic neurons, 5-HT1A knockout mice had normal levels of 5-HT and 5-hydroxyindoleacetic acid, possibly because of an up-regulation of 5-HT1B autoreceptors. Heterozygote 5-HT1A mutants expressed approximately one-half of wild-type receptor density and displayed intermediate phenotypes in most behavioral tests. These results demonstrate that 5-HT1A receptors are involved in the modulation of exploratory and fear-related behaviors and suggest that reductions in 5-HT1A receptor density due to genetic defects or environmental stressors might result in heightened anxiety.
Resumo:
Chemotaxis is mediated by activation of seven-transmembrane domain, G protein-coupled receptors, but the signal transduction pathways leading to chemotaxis are poorly understood. To identify G proteins that signal the directed migration of cells, we stably transfected a lymphocyte cell line (300-19) with G protein-coupled receptors that couple exclusively to Gαq (the m3 muscarinic receptor), Gαi (the κ-opioid receptor), and Gαs (the β-adrenergic receptor), as well as the human thrombin receptor (PAR-1) and the C-C chemokine receptor 2B. Cells expressing receptors that coupled to Gαi, but not to Gαq or Gαs, migrated in response to a concentration gradient of the appropriate agonist. Overexpression of Gα transducin, which binds to and inactivates free Gβγ dimers, completely blocked chemotaxis although having little or no effect on intracellular calcium mobilization or other measures of cell signaling. The identification of Gβγ dimers as a crucial intermediate in the chemotaxis signaling pathway provides further evidence that chemotaxis of mammalian cells has important similarities to polarized responses in yeast. We conclude that chemotaxis is dependent on activation of Gαi and the release of Gβγ dimers, and that Gαi-coupled receptors not traditionally associated with chemotaxis can mediate directed migration when they are expressed in hematopoietic cells.
Resumo:
Transgenic overexpression of Gαq in the heart triggers events leading to a phenotype of eccentric hypertrophy, depressed ventricular function, marked expression of hypertrophy-associated genes, and depressed β-adrenergic receptor (βAR) function. The role of βAR dysfunction in the development of this failure phenotype was delineated by transgenic coexpression of the carboxyl terminus of the βAR kinase (βARK), which acts to inhibit the kinase, or concomitant overexpression of the β2AR at low (≈30-fold, Gαq/β2ARL), moderate (≈140-fold, Gαq/β2ARM), and high (≈1,000-fold, Gαq/β2ARH) levels above background βAR density. Expression of the βARK inhibitor had no effect on the phenotype, consistent with the lack of increased βARK levels in Gαq mice. In marked contrast, Gαq/β2ARL mice displayed rescue of hypertrophy and resting ventricular function and decreased cardiac expression of atrial natriuretic factor and α-skeletal actin mRNA. These effects occurred in the absence of any improvement in basal or agonist-stimulated adenylyl cyclase (AC) activities in crude cardiac membranes, although restoration of a compartmentalized β2AR/AC signal cannot be excluded. Higher expression of receptors in Gαq/β2ARM mice resulted in salvage of AC activity, but hypertrophy, ventricular function, and expression of fetal genes were unaffected or worsened. With ≈1,000-fold overexpression, the majority of Gαq/β2ARH mice died with cardiomegaly at 5 weeks. Thus, although it appears that excessive, uncontrolled, or generalized augmentation of βAR signaling is deleterious in heart failure, selective enhancement by overexpressing the β2AR subtype to limited levels restores not only ventricular function but also reverses cardiac hypertrophy.
Resumo:
The two widely coexpressed isoforms of β-arrestin (termed βarrestin 1 and 2) are highly similar in amino acid sequence. The β-arrestins bind phosphorylated heptahelical receptors to desensitize and target them to clathrin-coated pits for endocytosis. To better define differences in the roles of β-arrestin 1 and 2, we prepared mouse embryonic fibroblasts from knockout mice that lack one of the β-arrestins (βarr1-KO and βarr2-KO) or both (βarr1/2-KO), as well as their wild-type (WT) littermate controls. These cells were analyzed for their ability to support desensitization and sequestration of the β2-adrenergic receptor (β2-AR) and the angiotensin II type 1A receptor (AT1A-R). Both βarr1-KO and βarr2-KO cells showed similar impairment in agonist-stimulated β2-AR and AT1A-R desensitization, when compared with their WT control cells, and the βarr1/2-KO cells were even further impaired. Sequestration of the β2-AR in the βarr2-KO cells was compromised significantly (87% reduction), whereas in the βarr1-KO cells it was not. Agonist-stimulated internalization of the AT1A-R was only slightly reduced in the βarr1-KO but was unaffected in the βarr2-KO cells. In the βarr1/2-KO cells, the sequestration of both receptors was dramatically reduced. Comparison of the ability of the two β-arrestins to sequester the β2-AR revealed β-arrestin 2 to be 100-fold more potent than β-arrestin 1. Down-regulation of the β2-AR was also prevented in the βarr1/2-KO cells, whereas no change was observed in the single knockout cells. These findings suggest that sequestration of various heptahelical receptors is regulated differently by the two β-arrestins, whereas both isoforms are capable of supporting receptor desensitization and down-regulation.