55 resultados para Acute Myelomonocytic Leukemia
Resumo:
The t(8;21) translocation between two genes known as AML1 and ETO is seen in approximately 12–15% of all acute myeloid leukemia (AML) and is the second-most-frequently observed nonrandom genetic alteration associated with AML. AML1 up-regulates a number of target genes critical to normal hematopoiesis, whereas the AML1/ETO fusion interferes with this trans-activation. We discovered that the fusion partner ETO binds to the human homolog of the murine nuclear receptor corepressor (N-CoR). The interaction is mediated by two unusual zinc finger motifs present at the carboxyl terminus of ETO. Human N-CoR (HuN-CoR), which we cloned and sequenced in its entirety, encodes a 2,440-amino acid polypeptide and has a central domain that binds ETO. N-CoR, mammalian Sin3 (mSin3A and B), and histone deacetylase 1 (HDAC1) form a complex that alters chromatin structure and mediates transcriptional repression by nuclear receptors and by a number of oncoregulatory proteins. We found that ETO, through its interaction with the N-CoR/mSin3/HDAC1 complex, is also a potent repressor of transcription. This observation provides a mechanism for how the AML1/ETO fusion may inhibit expression of AML1-responsive target genes and disturb normal hematopoiesis.
Resumo:
The recurrent t(1;22)(p13;q13) translocation is exclusively associated with infant acute megakaryoblastic leukemia. We have identified the two genes involved in this translocation. Both genes possess related sequences in the Drosophila genome. The chromosome 22 gene (megakaryocytic acute leukemia, MAL) product is predicted to be involved in chromatin organization, and the chromosome 1 gene (one twenty-two, OTT) product is related to the Drosophila split-end (spen) family of proteins. Drosophila genetic experiments identified spen as involved in connecting the Raf and Hox pathways. Because almost all of the sequences and all of the identified domains of both OTT and MAL proteins are included in the predicted fusion protein, the OTT-MAL fusion could aberrantly modulate chromatin organization, Hox differentiation pathways, or extracellular signaling.
Resumo:
A mammalian A-type cyclin, cyclin A1, is highly expressed in testes of both human and mouse and targeted mutagenesis in the mouse has revealed the unique requirement for cyclin A1 in the progression of male germ cells through the meiotic cell cycle. While very low levels of cyclin A1 have been reported in the human hematopoietic system and brain, the sites of elevated levels of expression of human cyclin A1 were several leukemia cell lines and blood samples from patients with hematopoietic malignances, notably acute myeloid leukemia. To evaluate whether cyclin A1 is directly involved with the development of myeloid leukemia, mouse cyclin A1 protein was overexpressed in the myeloid lineage of transgenic mice under the direction of the human cathepsin G (hCG) promoter. The resulting transgenic mice exhibited an increased proportion of immature myeloid cells in the peripheral blood, bone marrow, and spleen. The abnormal myelopoiesis developed within the first few months after birth and progressed to overt acute myeloid leukemia at a low frequency (≈15%) over the course of 7–14 months. Both the abnormalities in myelopoiesis and the leukemic state could be transplanted to irradiated SCID (severe combined immunodeficient) mice. The observations suggest that cyclin A1 overexpression results in abnormal myelopoiesis and is necessary, but not sufficient in the cooperative events inducing the transformed phenotype. The data further support an important role of cyclin A1 in hematopoiesis and the etiology of myeloid leukemia.
Resumo:
We have cloned a fusion partner of the MLL gene at 11q23 and identified it as the gene encoding the human formin-binding protein 17, FBP17. It maps to chromosome 9q34 centromeric to ABL. The gene fusion results from a complex chromosome rearrangement that was resolved by fluorescence in situ hybridization with various probes on chromosomes 9 and 11 as an ins(11;9)(q23;q34)inv(11)(q13q23). The rearrangement resulted in a 5′-MLL/FBP17-3′ fusion mRNA. We retrovirally transduced murine-myeloid progenitor cells with MLL/FBP17 to test its transforming ability. In contrast to MLL/ENL, MLL/ELL and other MLL-fusion genes, MLL/FBP17 did not give a positive readout in a serial replating assay. Therefore, we assume that additional cooperating genetic abnormalities might be needed to establish a full malignant phenotype. FBP17 consists of a C-terminal Src homology 3 domain and an N-terminal region that is homologous to the cell division cycle protein, cdc15, a regulator of the actin cytoskeleton in Schizosaccharomyces pombe. Both domains are separated by a consensus Rho-binding motif that has been identified in different Rho-interaction partners such as Rhotekin and Rhophilin. We evaluated whether FBP17 and members of the Rho family interact in vivo with a yeast two-hybrid assay. None of the various Rho proteins tested, however, interacted with FBP17. We screened a human kidney library and identified a sorting nexin, SNX2, as a protein interaction partner of FBP17. These data provide a link between the epidermal growth factor receptor pathway and an MLL fusion protein.
Resumo:
In vivo all-trans-retinoic acid (ATRA), a differentiation inducer, is capable of causing clinical remission in about 90% of patients with acute promyelocytic leukemia (APL). The molecular basis for the differentiation of APL cells after treatment with ATRA remains obscure and may involve genes other than the known retinoid nuclear transcription factors. We report here the ATRA-induced gene expression in a cell line (NB4) derived from a patient with APL. By differential display-PCR, we isolated and characterized a novel gene (RIG-E) whose expression is up-regulated by ATRA. The gene is 4.0 kb long, consisting of four exons and three introns, and is localized on human chromosome region 8q24. The deduced amino acid sequence predicts a cell surface protein containing 20 amino acids at the N-terminal end corresponding to a signal peptide and an extracellular sequence containing 111 amino acids. The RIG-E coded protein shares some homology with CD59 and with a number of growth factor receptors. It shares high sequence homology with the murine LY-6 multigene family, whose members are small cysteine-rich proteins differentially expressed in several hematopoietic cell lines and appear to function in signal transduction. It seems that so far RIG-E is the closest human homolog of the LY-6 family. Expression of RIG-E is not restricted to myeloid differentiation, because it is also present in thymocytes and in a number of other tissues at different levels.
Resumo:
The human chromosome 21 AML1 gene is expressed predominantly in the hematopoietic system. In several leukemia-associated translocations AML1 is fused to other genes and transcription of the fused regions is mediated by upstream sequences that normally regulate the expression of AML1. The 5' genomic region of AML1 was cloned and sequenced. The two 5' untranslated regions (UTRs) previously identified in AML1 cDNAs were located in this region and the distance between them was established. The distal 5' UTR maps over 7 kb upstream of the proximal one. Using primer extension with mRNA, transcription start sites were identified at two distinct sites above these 5' uTRs. Sequence analysis revealed the absence of a TATA motif and the presence of Sp1, PU.1, Oct, CRE, Myb, Ets, and Ets-like binding sites in both upstream regions. Several initiator elements (Inr) that overlap the transcription start sites were also identified. These proximal and distal upstream regions and their deletion mutants were cloned in front of a luciferase reporter gene and used in transfection assays. We demonstrate that both upstream regions function as promoters in hematopoietic (Jurkat) and nonhematopoietic (HEK) cell lines. The activity of both promoters was orientation dependent and was enhanced, in a cell-type specific manner, by a heterologous enhancer sequence. These results indicate that additional control elements, either negative or positive, regulate the tissue-specific expression of AML1.
Resumo:
Acute promyelocytic leukemia (APL) has been ascribed to a chromosomal translocation event which results in a fusion protein comprising the PML protein and retinoic acid receptor alpha. PML is normally a component of a nuclear multiprotein complex which is disrupted in the APL disease state. Here, two newly defined cysteine/histidine-rich protein motifs called the B-box (B1 and B2) from PML have been characterized in terms of their effect on PML nuclear body formation, their dimerization, and their biophysical properties. We have shown that both peptides bind Zn2+, which induces changes in the peptides' structures. We demonstrate that mutants in both B1 and B2 do not form PML nuclear bodies in vivo and have a phenotype that is different from that observed in the APL disease state. Interestingly, these mutations do not affect the ability of wild-type PML to dimerize with mutant proteins in vitro, suggesting that the B1 and B2 domains are involved in an additional interaction central to PML nuclear body formation. This report in conjunction with our previous work demonstrates that the PML RING-Bl/B2 motif plays a fundamental role in formation of a large multiprotein complex, a function that may be common to those unrelated proteins which contain the motif.
Resumo:
Patients with the M4Eo subtype of acute myeloid leukemia almost invariably are found to have an inversion of chromosome 16 in their leukemic cells, which results in a gene fusion between the transcription factor called core binding factor beta (CBFbeta) on 16q and a smooth muscle myosin heavy chain (SMMHC) gene on 16p. Subcellular localizations of the wild-type CBFbeta and the CBFbeta-SMMHC fusion protein were determined by immunofluorescence of NIH 3T3 cells that overexpress wild-type or fusion protein. Normal CBFbeta showed an unexpected perinuclear pattern consistent with primary localization in the Golgi complex. The CBFbeta-SMMHC fusion protein had a very different pattern. Nuclear staining included rod-like crystalline structures as long as 11 microm. The heterodimeric partner of CBFbeta, CBFalpha, formed part of this complex. Cytoplasmic staining included stress fibers that colocalized with actin, probably as a consequence of the myosin heavy chain component of the fusion protein. Deletion of different regions of the CBFbeta portion of the fusion protein showed that binding to CBFalpha was not required for nuclear translocation. However, deletion of parts of the SMMHC domain of the fusion protein involved in myosin-mediated filament formation resulted in proteins that did not form rod-like structures. These observations confirm previous indirect evidence that the CBFbeta-SMMHC fusion protein is capable of forming macromolecular nuclear aggregates and suggests possible models for the mechanism of leukemic transformation.
Resumo:
The t(15;17) chromosomal translocation, specific for acute promyelocytic leukemia (APL), fuses the PML gene to the retinoic acid receptor alpha (RAR alpha) gene, resulting in expression of a PML-RAR alpha hybrid protein. In this report, we analyzed the nature of PML-RAR alpha-containing complexes in nuclear protein extracts of t(15;17)-positive cells. We show that endogenous PML-RAR alpha can bind to DNA as a homodimer, in contrast to RAR alpha that requires the retinoid X receptor (RXR) dimerization partner. In addition, these cells contain oligomeric complexes of PML-RAR alpha and endogenous RXR. Treatment with retinoic acid results in a decrease of PML-RAR alpha protein levels and, as a consequence, of DNA binding by the different complexes. Using responsive elements from various hormone signaling pathways, we show that PML-RAR alpha homodimers have altered DNA-binding characteristics when compared to RAR alpha-RXR alpha heterodimers. In transfected Drosophila SL-3 cells that are devoid of endogenous retinoid receptors PML-RAR alpha inhibits transactivation by RAR alpha-RXR alpha heterodimers in a dominant fashion. In addition, we show that both normal retinoid receptors and the PML-RAR alpha hybrid bind and activate the peroxisome proliferator-activated receptor responsive element from the Acyl-CoA oxidase gene, indicating that retinoids and peroxisome proliferator receptors may share common target genes. These properties of PML-RAR alpha may contribute to the transformed phenotype of APL cells.
Resumo:
Reduction of 5,10-methylenetetrahydrofolate (methyleneTHF), a donor for methylating dUMP to dTMP in DNA synthesis, to 5-methyltetrahydrofolate (methylTHF), the primary methyl donor for methionine synthesis, is catalyzed by 5,10-methylenetetrahydrofolate reductase (MTHFR). A common 677 C → T polymorphism in the MTHFR gene results in thermolability and reduced MTHFR activity that decreases the pool of methylTHF and increases the pool of methyleneTHF. Recently, another polymorphism in MTHFR (1298 A → C) has been identified that also results in diminished enzyme activity. We tested whether carriers of these variant alleles are protected from adult acute leukemia. We analyzed DNA from a case–control study in the United Kingdom of 308 adult acute leukemia patients and 491 age- and sex-matched controls. MTHFR variant alleles were determined by a PCR-restriction fragment length polymorphism assay. The MTHFR 677TT genotype was lower among 71 acute lymphocytic leukemia (ALL) cases compared with 114 controls, conferring a 4.3-fold decrease in risk of ALL [odds ratio (OR = 0.23; 95% CI = 0.06–0.81]. We observed a 3-fold reduction in risk of ALL in individuals with the MTHFR 1298AC polymorphism (OR = 0.33; 95% CI = 0.15–0.73) and a 14-fold decreased risk of ALL in those with the MTHFR 1298CC variant allele (OR = 0.07; 95% CI = 0.00–1.77). In acute myeloid leukemia, no significant difference in MTHFR 677 and 1298 genotype frequencies was observed between 237 cases and 377 controls. Individuals with the MTHFR 677TT, 1298AC, and 1298CC genotypes have a decreased risk of adult ALL, but not acute myeloid leukemia, which suggests that folate inadequacy may play a key role in the development of ALL.
Resumo:
Acute promyelocytic leukemia (APL) is associated with reciprocal chromosomal translocations involving the retinoic acid receptor α (RARα) locus on chromosome 17. In the majority of cases, RARα translocates and fuses with the promyelocytic leukemia (PML) gene located on chromosome 15. The resulting fusion genes encode the two structurally unique PML/RARα and RARα/PML fusion proteins as well as aberrant PML gene products, the respective pathogenetic roles of which have not been elucidated. We have generated transgenic mice in which the PML/RARα fusion protein is specifically expressed in the myeloid-promyelocytic lineage. During their first year of life, all the PML/RARα transgenic mice have an abnormal hematopoiesis that can best be described as a myeloproliferative disorder. Between 12 and 14 months of age, 10% of them develop a form of acute leukemia with a differentiation block at the promyelocytic stage that closely mimics human APL even in its response to retinoic acid. Our results are conclusive in vivo evidence that PML/RARα plays a crucial role in the pathogenesis of APL.
Resumo:
The TEL (ETV6)−AML1 (CBFA2) gene fusion is the most common reciprocal chromosomal rearrangement in childhood cancer occurring in ≈25% of the most predominant subtype of leukemia— common acute lymphoblastic leukemia. The TEL-AML1 genomic sequence has been characterized in a pair of monozygotic twins diagnosed at ages 3 years, 6 months and 4 years, 10 months with common acute lymphoblastic leukemia. The twin leukemic DNA shared the same unique (or clonotypic) but nonconstitutive TEL-AML1 fusion sequence. The most plausible explanation for this finding is a single cell origin of the TEL-AML fusion in one fetus in utero, probably as a leukemia-initiating mutation, followed by intraplacental metastasis of clonal progeny to the other twin. Clonal identity is further supported by the finding that the leukemic cells in the two twins shared an identical rearranged IGH allele. These data have implications for the etiology and natural history of childhood leukemia.
Resumo:
The PML/SP100 nuclear bodies (NBs) were first described as discrete subnuclear structures containing the SP100 protein. Subsequently, they were shown to contain the PML protein which is part of the oncogenic PML-RARα hybrid produced by the t(15;17) chromosomal translocation characteristic of acute promyelocytic leukemia. Yet, the physiological role of these nuclear bodies remains unknown. Here, we show that SP100 binds to members of the heterochromatin protein 1 (HP1) families of non-histone chromosomal proteins. Further, we demonstrate that a naturally occurring splice variant of SP100, here called SP100-HMG, is a member of the high mobility group-1 (HMG-1) protein family and may thus possess DNA-binding potential. Both HP1 and SP100-HMG concentrate in the PML/SP100 NBs, and overexpression of SP100 leads to enhanced accumulation of endogenous HP1 in these structures. When bound to a promoter, SP100, SP100-HMG and HP1 behave as transcriptional repressors in transfected mammalian cells. These observations present molecular evidence for an association between the PML/SP100 NBs and the chromatin nuclear compartment. They support a model in which the NBs may play a role in certain aspects of chromatin dynamics.
Resumo:
In acute promyelocytic leukemia (APL), the typical t(15;17) and the rare t(11;17) translocations express, respectively, the PML/RARα and PLZF/RARα fusion proteins (where RARα is retinoic acid receptor α). Herein, we demonstrate that the PLZF and PML proteins interact with each other and colocalize onto nuclear bodies (NBs). Furthermore, induction of PML expression by interferons leads to a recruitment of PLZF onto NBs without increase in the levels of the PLZF protein. PML/RARα and PLZF/RARα localize to the same microspeckled nuclear domains that appear to be common targets for the two fusion proteins in APL. Although PLZF/RARα does not affect the localization of PML, PML/RARα delocalizes the endogenous PLZF protein in t(15;17)-positive NB4 cells, pointing to a hierarchy in the nuclear targeting of these proteins. Thus, our results unify the molecular pathogenesis of APL with at least two different RARα gene translocations and stress the importance of alterations of PLZF and RARα nuclear localizations in this disease.