21 resultados para Active part of stance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

RNA-RNA interactions govern a number of biological processes. Several RNAs, including natural sense and antisense RNAs, interact by means of a two-step mechanism: recognition is mediated by a loop-loop complex, which is then stabilized by formation of an extended intermolecular duplex. It was proposed that the same mechanism holds for dimerization of the genomic RNA of human immunodeficiency virus type 1 (HIV-1), an event thought to control crucial steps of HIV-1 replication. However, whereas interaction between the partially self-complementary loop of the dimerization initiation site (DIS) of each monomer is well established, formation of the extended duplex remained speculative. Here we first show that in vitro dimerization of HIV-1 RNA is a specific process, not resulting from simple annealing of denatured molecules. Next we used mutants of the DIS to test the formation of the extended duplex. Four pairs of transcomplementary mutants were designed in such a way that all pairs can form the loop-loop "kissing" complex, but only two of them can potentially form the extended duplex. All pairs of mutants form heterodimers whose thermal stability, dissociation constant, and dynamics were analyzed. Taken together, our results indicate that, in contrast with the interactions between natural sense and antisense RNAs, no extended duplex is formed during dimerization of HIV-1 RNA. We also showed that 55-mer sense RNAs containing the DIS are able to interfere with the preformed HIV-1 RNA dimer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chorismate mutase (EC 5.4.99.5) catalyzes the intramolecular rearrangement of chorismate to prephenate. Arg-90 in the active site of the enzyme from Bacillus subtilis is in close proximity to the substrate's ether oxygen and may contribute to efficient catalysis by stabilizing the presumed dipolar transition state that would result upon scission of the C--O bond. To test this idea, we have developed a novel complementation system for chorismate mutase activity in Escherichia coli by reengineering parts of the aromatic amino acid biosynthetic pathway. The codon for Arg-90 was randomized, alone and in combination with that for Cys-88, and active clones were selected. The results show that a positively charged residue either at position 88 (Lys) or 90 (Arg or Lys) is essential. Our data provide strong support for the hypothesis that the positive charge is required for stabilization of the transition state of the enzymatic chorismate rearrangement. The new selection system, in conjunction with combinatorial mutagenesis, renders the mechanism of the natural enzyme(s) accessible to further exploration and opens avenues for the improvement of first generation catalytic antibodies with chorismate mutase activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bowerbirds (Ptilonorhynchidae) have previously been considered to be confined to the Australo-Papuan continental plate. We provide molecular evidence that the extinct New Zealand Piopio Turnagra capensis is, in fact, a bowerbird. Such a finding is surprising on biogeographical grounds. However, recent molecular evidence on the relationships of the New Zealand moas and kiwis with the Australo-Papuan flightless birds suggests the need for a reassessment of current views on the origins of New Zealand's fauna.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By using a crosslinkable probe incorporated into the 3' terminus of nascent transcript, three sites were mapped in Escherichia coli RNA polymerase that are contacted by the RNA in the productive elongation complex. Two of these sites are in the beta subunit and one is in the beta' subunit. During elongation, the transcription complex occasionally undergoes an arrest whereby it can neither extend nor release the RNA transcript. It is demonstrated that in an arrested complex, the three contacts of RNA 3' terminus are lost, while a new beta' subunit contact becomes prominent. Thus, elongation arrest appears to involve the disengagement of the bulk of the active center from the 3' terminus of RNA and the transfer of the terminus into a new protein environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiscale asymptotic methods developed previously to study macromechanical wave propagation in cochlear models are generalized here to include active control of a cochlear partition having three subpartitions, the basilar membrane, the reticular lamina, and the tectorial membrane. Activation of outer hair cells by stereocilia displacement and/or by lateral wall stretching result in a frequency-dependent force acting between the reticular lamina and basilar membrane. Wavelength-dependent fluid loads are estimated by using the unsteady Stokes' equations, except in the narrow gap between the tectorial membrane and reticular lamina, where lubrication theory is appropriate. The local wavenumber and subpartition amplitude ratios are determined from the zeroth order equations of motion. A solvability relation for the first order equations of motion determines the subpartition amplitudes. The main findings are as follows: The reticular lamina and tectorial membrane move in unison with essentially no squeezing of the gap; an active force level consistent with measurements on isolated outer hair cells can provide a 35-dB amplification and sharpening of subpartition waveforms by delaying dissipation and allowing a greater structural resonance to occur before the wave is cut off; however, previously postulated activity mechanisms for single partition models cannot achieve sharp enough tuning in subpartitioned models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The active site of the allosteric chorismate mutase (chorismate pyruvatemutase, EC 5.4.99.5) from yeast Saccharomyces cerevisiae (YCM) was located by comparison with the mutase domain (ECM) of chorismate mutase/prephenate dehydratase [prephenate hydro-lyase (decarboxylating), EC 4.2.1.51] (the P protein) from Escherichia coli. Active site domains of these two enzymes show very similar four-helix bundles, each of 94 residues which superimpose with a rms deviation of 1.06 A. Of the seven active site residues, four are conserved: the two arginines, which bind to the inhibitor's two carboxylates; the lysine, which binds to the ether oxygen; and the glutamate, which binds to the inhibitor's hydroxyl group in ECM and presumably in YCM. The other three residues in YCM (ECM) are Thr-242 (Ser-84), Asn-194 (Asp-48), and Glu-246 (Gln-88). This Glu-246, modeled close to the ether oxygen of chorismate in YCM, may function as a polarizing or ionizable group, which provides another facet to the catalytic mechanism.