33 resultados para APOPTOTIC MIMICRY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The balance between the inductive signals and endogenous anti-apoptotic mechanisms determines whether or not programmed cell death occurs. The widely expressed inhibitor of apoptosis gene family includes three closely related mammalian proteins: c-IAP1, c-IAP2, and hILP. The anti-apoptotic properties of these proteins have been linked to caspase inhibition. Here we show that one member of this group, hILP, inhibits interleukin-1β-converting enzyme-induced apoptosis via a mechanism dependent on the selective activation of c-Jun N-terminal kinase 1. These data demonstrate that apoptosis can be inhibited by an endogenous cellular protein by a mechanism that requires the activation of a single member of the mitogen-activating protein kinase family.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have reported some type II restriction-modification (RM) gene complexes on plasmids resist displacement by an incompatible plasmid through postsegregational host killing. Such selfish behavior may have contributed to the spread and maintenance of RM systems. Here we analyze the role of regulatory genes (C), often found linked to RM gene complexes, in their interaction with the host and the other RM gene complexes. We identified the C gene of EcoRV as a positive regulator of restriction. A C mutation eliminated postsegregational killing by EcoRV. The C system has been proposed to allow establishment of RM systems in new hosts by delaying the appearance of restriction activity. Consistent with this proposal, bacteria preexpressing ecoRVC were transformed at a reduced efficiency by plasmids carrying the EcoRV RM gene complex. Cells carrying the BamHI RM gene complex were transformed at a reduced efficiency by a plasmid carrying a PvuII RM gene complex, which shares the same C specificity. The reduction most likely was caused by chromosome cleavage at unmodified PvuII sites by prematurely expressed PvuII restriction enzyme. Therefore, association of the C genes of the same specificity with RM gene complexes of different sequence specificities can confer on a resident RM gene complex the capacity to abort establishment of a second, incoming RM gene complex. This phenomenon, termed “apoptotic mutual exclusion,” is reminiscent of suicidal defense against virus infection programmed by other selfish elements. pvuIIC and bamHIC genes define one incompatibility group of exclusion whereas ecoRVC gene defines another.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distinction between physiological (apoptotic) and pathological (necrotic) cell deaths reflects mechanistic differences in cellular disintegration and is of functional significance with respect to the outcomes that are triggered by the cell corpses. Mechanistically, apoptotic cells die via an active and ordered pathway; necrotic deaths, conversely, are chaotic and passive. Macrophages and other phagocytic cells recognize and engulf these dead cells. This clearance is believed to reveal an innate immunity, associated with inflammation in cases of pathological but not physiological cell deaths. Using objective and quantitative measures to assess these processes, we find that macrophages bind and engulf native apoptotic and necrotic cells to similar extents and with similar kinetics. However, recognition of these two classes of dying cells occurs via distinct and noncompeting mechanisms. Phosphatidylserine, which is externalized on both apoptotic and necrotic cells, is not a specific ligand for the recognition of either one. The distinct modes of recognition for these different corpses are linked to opposing responses from engulfing macrophages. Necrotic cells, when recognized, enhance proinflammatory responses of activated macrophages, although they are not sufficient to trigger macrophage activation. In marked contrast, apoptotic cells profoundly inhibit phlogistic macrophage responses; this represents a cell-associated, dominant-acting anti-inflammatory signaling activity acquired posttranslationally during the process of physiological cell death.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurotrophic factor deprivation causes apoptosis by a mechanism that requires macromolecular synthesis. This fact suggests that gene expression is necessary to achieve cell death. To identify mRNA that is expressed in apoptotic cells we used subtractive hybridization with cDNA prepared from neuronal pheochromocytoma cells. Monoamine oxidase (MAO) expression was increased in cells during nerve growth factor withdrawal-induced apoptosis. The increased apoptosis and induction of MAO was prevented by inhibition of the p38 mitogen-activated protein (MAP) kinase pathway. MAO may contribute to the apoptotic process because inhibition of MAO activity suppressed cell death. Together, these data indicate that MAO may be a target of pro-apoptotic signal transduction by the p38 MAP kinase pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor formation involves the accumulation of a series of genetic alterations that are required for malignant growth. In most malignancies, genetic changes can be observed at the chromosomal level as losses or gains of whole or large portions of chromosomes. Here we provide evidence that tumor DNA may be horizontally transferred by the uptake of apoptotic bodies. Phagocytosis of apoptotic bodies derived from H-rasV12- and human c-myc-transfected rat fibroblasts resulted in loss of contact inhibition in vitro and a tumorigenic phenotype in vivo. Fluorescence in situ hybridization analysis revealed the presence of rat chromosomes or of rat and mouse fusion chromosomes in the nuclei of the recipient murine cells. The transferred DNA was propagated, provided that the transferred DNA conferred a selective advantage to the cell and that the phagocytotic host cell was p53-negative. These results suggest that lateral transfer of DNA between eukaryotic cells may result in aneuploidy and the accumulation of genetic changes that are necessary for tumor formation.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We recently have introduced the term vasculogenic mimicry to describe the unique ability of aggressive melanoma tumor cells to form tubular structures and patterned networks in three-dimensional culture, which “mimics” embryonic vasculogenic networks formed by differentiating endothelial cells. In the current study, we address the biological significance of several endothelial-associated molecules (revealed by microarray analysis) with respect to expression and function in highly aggressive and poorly aggressive human cutaneous melanoma cell lines (established from the same patient). In a comparative analysis, CD31 was not expressed by any of the melanoma cell lines, whereas TIE-1 (tyrosine kinase with Ig and epidermal growth factor homology domains-1) was strongly expressed in the highly aggressive tumor cells with a low level of expression in one of the poorly aggressive cell lines. Vascular endothelial (VE)-cadherin was exclusively expressed by highly aggressive melanoma cells and was undetectable in the poorly aggressive tumor cells, suggesting the possibility of a vasculogenic switch. Down-regulation of VE-cadherin expression in the aggressive melanoma cells abrogated their ability to form vasculogenic networks and directly tested the hypothesis that VE-cadherin is critical in melanoma vasculogenic mimicry. These results highlight the plasticity of aggressive melanoma cells and call into question their possible genetic reversion to an embryonic phenotype. This finding could pose a significant clinical challenge in targeting tumor cells that may masquerade as circulating endothelial cells or other embryonic-like stem cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inhibitor of apoptosis (IAP) family of anti-apoptotic proteins regulate programmed cell death and/or apoptosis. One such protein, X-linked IAP (XIAP), inhibits the activity of the cell death proteases, caspase-3, -7, and -9. In this study, using constitutively active mutants of caspase-3, we found that XIAP promotes the degradation of active-form caspase-3, but not procaspase-3, in living cells. The XIAP mutants, which cannot interact with caspase-3, had little or no activity of promoting the degradation of caspase-3. RING finger mutants of XIAP also could not promote the degradation of caspase-3. A proteasome inhibitor suppressed the degradation of caspase-3 by XIAP, suggesting the involvement of a ubiquitin-proteasome pathway in the degradation. An in vitro ubiquitination assay revealed that XIAP acts as a ubiquitin-protein ligase for caspase-3. Caspase-3 was ubiquitinated in the presence of XIAP in living cells. Both the association of XIAP with caspase-3 and the RING finger domain of XIAP were essential for ubiquitination. Finally, the RING finger mutants of XIAP were less effective than wild-type XIAP at preventing apoptosis induced by overexpression of either active-form caspase-3 or Fas. These results demonstrate that the ubiquitin-protein ligase activity of XIAP promotes the degradation of caspase-3, which enhances its anti-apoptotic effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous immature thymocytes undergo apoptosis and are rapidly engulfed by phagocytic thymic macrophages. The macrophage surface receptors involved in apoptotic thymocyte recognition are unknown. We have examined the role of the class A macrophage scavenger receptor (SR-A) in the engulfment of apoptotic thymocytes. Uptake of steroid-treated apoptotic thymocytes by thymic and inflammatory-elicited SR-A positive macrophages is partially inhibited by an anti-SR-A mAb and more completely by a range of scavenger receptor ligands. Thymic macrophages from mice with targeted disruption of the SR-A gene show a 50% reduction in phagocytosis of apoptotic thymocytes in vitro. These data suggest that SR-A may play a role in the clearance of dying cells in the thymus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium binding to the N-domain of troponin C initiates a series of conformational changes that lead to muscle contraction. Calcium binding provides the free energy for a hydrophobic region in the core of N-domain to assume a more open configuration. Fluorescence measurements on a tryptophan mutant (F29W) show that a similar conformational change occurs in the absence of Ca2+ when the temperature is lowered under pressure. The conformation induced by subzero temperatures binds the hydrophobic probe bis-aminonaphthalene sulfonate, and the tryptophan has the same fluorescence lifetime (7 ns) as in the Ca2+-bound form. The decrease in volume (delta V = -25.4 ml/mol) corresponds to an increase in surface area. Thermodynamic measurements suggest an enthalpy-driven conformational change that leads to an intermediate with an exposed N-domain core and a high affinity for Ca2+.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emerging evidence suggests that an amplifiable protease cascade consisting of multiple aspartate specific cysteine proteases (ASCPs) is responsible for the apoptotic changes observed in mammalian cells undergoing programmed cell death. Here we describe the cloning of two novel ASCPs from human Jurkat T-lymphocytes. Like other ASCPs, the new proteases, named Mch4 and Mch5, are derived from single chain proenzymes. However, their putative active sites contain a QACQG pentapeptide instead of the QACRG present in ail known ASCPs. Also, their N termini contain FADD-like death effector domains, suggesting possible interaction with FADD. Expression of Mch4 in Escherichia coli produced an active protease that, like other ASCPs, was potently inhibited (Kj = 14 nM) by the tetrapeptide aldehyde DEVD-CHO. Interestingly, both Mch4 and the serine protease granzyme B cleave recombinant proCPP32 and proMch3 at a conserved IXXD-S sequence to produce the large and small subunits of the active proteases. Granzyme B also cleaves proMch4 at a homologous IXXD-A processing sequence to produce mature Mch4. These observations suggest that CPP32 and Mch3 are targets of mature Mch4 protease in apoptotic cells. The presence of the FADD-like domains in Mch4 and Mch5 suggests a role for these proteases in the Fas-apoptotic pathway. In addition, these proteases could participate in the granzyme B apoptotic pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apoptosis of photoreceptors occurs infrequently in adult retina but can be triggered in inherited and environmentally induced retinal degenerations. The protooncogene bcl-2 is known to be a potent regulator of cell survival in neurons. We created lines of transgenic mice overexpressing bcl-2 to test for its ability to increase photoreceptor survival. Bcl-2 increased photoreceptor survival in mice with retinal degeneration caused by a defective opsin or cGMP phosphodiesterase. Overexpression of Bcl-2 in normal photoreceptors also decreased the damaging effects of constant light exposure. Apoptosis was induced in normal photoreceptors by very high levels of bcl-2. We conclude that bcl-2 is an important regulator of photoreceptor cell death in retinal degenerations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Translation termination requires two codon-specific polypeptide release factors in prokaryotes and one omnipotent factor in eukaryotes. Sequences of 17 different polypeptide release factors from prokaryotes and eukaryotes were compared. The prokaryotic release factors share residues split into seven motifs. Conservation of many discrete, perhaps critical, amino acids is observed in eukaryotic release factors, as well as in the C-terminal portion of elongation factor (EF) G. Given that the C-terminal domains of EF-G interacts with ribosomes by mimicry of a tRNA structure, the pattern of conservation of residues in release factors may reflect requirements for a tRNA-mimicry for binding to the A site of the ribosome. This mimicry would explain why release factors recognize stop codons and suggests that all prokaryotic and eukaryotic release factors evolved from the progenitor of EF-G.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The restriction of phosphatidylserine (PtdSer) to the inner surface of the plasma membrane bilayer is lost early during apoptosis. Since PtdSer is a potent surface procoagulant, and since there is an increased incidence of coagulation events in patients with systemic lupus erythematosus (SLE) who have anti-phospholipid antibodies, we addressed whether apoptotic cells are procoagulant and whether anti-phospholipid antibodies influence this. Apoptotic HeLa cells, human endothelial cells, and a murine pre-B-cell line were markedly procoagulant in a modified Russell viper venom assay. This procoagulant effect was entirely abolished by addition of the PtdSer-binding protein, annexin V, confirming that it was PtdSer-dependent. The procoagulant effect was also abolished by addition of IgG purified from the plasma of three patients with anti-phospholipid antibody syndrome, but not IgG from normal controls. Confocal microscopy of apoptotic cells stained with fluorescein-isothiocyanate-conjugated-annexin V demonstrated (Ca2+)-dependent binding to the surface of membrane blebs o apoptotic cells, but not to intracellular membranes. Recent data indicate that the surface blebs of apoptotic cells constitute an important immunogenic particle in SLE. We propose that the PtdSer exposed on the outside of these blebs can induce the production of anti-phospholipid antibodies, which might also enhance the immunogenicity of the bleb contents. When apoptosis occurs in a microenvironment in direct contact with circulating plasma, the unique procoagulant consequences of the apoptotic surface may additionally be expressed. This might explain the increased incidence of pathological intravascular coagulation events that occur in some lupus patients who have anti-phospholipid antibodies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular mimicry, normally defined by the level of primary-sequence similarities between self and foreign antigens, has been considered a key element in the pathogenesis of autoimmunity. Here we describe an example of molecular mimicry between two overlapping peptides within a single self-antigen, both of which are recognized by the same human self-reactive T-cell clone. Two intervening peptides did not stimulate the T-cell clone, even though they share nine amino acids with the stimulatory peptides. Molecular modeling of major histocompatibility complex class II-peptide complexes suggests that both of the recognized peptides generate similar antigenic surfaces, although these are composed of different sets of amino acids. The molecular modeling of a peptide shifted one residue from the stimulatory peptide, which was recognized in the context of the same HLA molecule by another T-cell clone, generated a completely different antigenic surface. Functional studies using truncated peptides confirmed that the anchor residues of the two "mimicking" epitopes in the HLA groove differ. Our results show, for two natural epitopes, how molecular mimicry can occur and suggest that studies of potential antigenic surfaces, rather than sequence similarity, are necessary for analyzing suspected peptide mimicry.