65 resultados para 3 NONCODING REGION


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The cyc1-512 mutation is a 38-bp deletion in the 3' untranslated region of the CYC1 gene, which encodes iso-1-cytochrome c in Saccharomyces cerevisiae. This deletion caused a 90% reduction in the levels of the CYC1 mRNA and protein because of the absence of the normal 3' end-forming signal. Although the 3' end-forming signal was not defined by previous analyses, we report that concomitant alteration by base-pair substitution of three 3' end-forming signals within and adjacent to the 38-bp region produced the same phenotype as the cyc1-512 mutation. Furthermore, these signals appear to be related to the previously identified 3' end-forming signal TATATA. A computer analysis revealed that TATATA and related sequences were present in the majority of 3' untranslated regions of yeast genes. Although TATATA may be the strongest and most frequently used signal in yeast genes, the CYC1+ gene concomitantly employed the weaker signals TT-TATA, TATGTT, and TATTTA, resulting in a strong signal.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have identified a murine gene, metaxin, that spans the 6-kb interval separating the glucocerebrosidase gene (GC) from the thrombospondin 3 gene on chromosome 3E3-F1. Metaxin and GC are transcribed convergently; their major polyadenylylation sites are only 431 bp apart. On the other hand, metaxin and the thrombospondin 3 gene are transcribed divergently and share a common promoter sequence. The cDNA for metaxin encodes a 317-aa protein, without either a signal sequence or consensus for N-linked glycosylation. Metaxin protein is expressed ubiquitously in tissues of the young adult mouse, but no close homologues have been found in the DNA or protein data bases. A targeted mutation (A-->G in exon 9) was introduced into GC by homologous recombination in embryonic stem cells to establish a mouse model for a mild form of Gaucher disease. A phosphoglycerate kinase-neomycin gene cassette was also inserted into the 3'-flanking region of GC as a selectable marker, at a site later identified as the terminal exon of metaxin. Mice homozygous for the combined mutations die early in gestation. Since the same amino acid mutation in humans is associated with mild type 1 Gaucher disease, we suggest that metaxin protein is likely to be essential for embryonic development in mice. Clearly, the contiguous gene organization at this locus limits targeting strategies for the production of murine models of Gaucher disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In Caenorhabditis elegans, pre-mRNA for the essential splicing factor U2AF65 sometimes is spliced to produce an RNA that includes an extra 216-bp internal exon, exon 3. Inclusion of exon 3 inserts an in-frame stop codon, yet this RNA is not subject to SMG-mediated RNA surveillance. To test whether exon 3 causes RNA to remain nuclear and thereby escape decay, we inserted it into the 3′ untranslated region of a gfp reporter gene. Although exon 3 did not affect accumulation or processing of the mRNA, it dramatically suppressed expression of green fluorescent protein (GFP). We showed by in situ hybridization that exon 3-containing gfp RNA is retained in the nucleus. Intriguingly, exon 3 contains 10 matches to the 8-bp 3′ splice-site consensus. We hypothesized that U2AF might recognize this octamer and thereby prevent export. This idea is supported by RNA interference experiments in which reduced levels of U2AF resulted in a small burst of gfp expression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The signal transduction and activation of RNA (STAR) family of RNA-binding proteins, whose members are evolutionarily conserved from yeast to humans, are important for a number of developmental decisions. For example, in the mouse, quaking proteins (QKI-5, QKI-6, and QKI-7) are essential for embryogenesis and myelination , whereas a closely related protein in Caenorhabditis elegans, germline defective-1 (GLD-1), is necessary for germ-line development. Recently, GLD-1 was found to be a translational repressor that acts through regulatory elements, called TGEs (for tra-2 and GLI elements), present in the 3′ untranslated region of the sex-determining gene tra-2. This gene promotes female development, and repression of tra-2 translation by TGEs is necessary for the male cell fates. The finding that GLD-1 inhibits tra-2 translation raises the possibility that other STAR family members act by a similar mechanism to control gene activity. Here we demonstrate, both in vitro and in vivo, that QKI-6 functions in the same manner as GLD-1 and can specifically bind to TGEs to repress translation of reporter constructs containing TGEs. In addition, expression of QKI-6 in C. elegans wild-type hermaphrodites or in hermaphrodites that are partially masculinized by a loss-of-function mutation in the sex-determining gene tra-3 results in masculinization of somatic tissues, consistent with QKI-6 repressing the activity of tra-2. These results strongly suggest that QKI-6 may control gene activity by operating through TGEs to regulate translation. In addition, our data support the hypothesis that other STAR family members may also be TGE-dependent translational regulators.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Iron regulatory proteins (IRPs) are cytoplasmic RNA binding proteins that are central components of a sensory and regulatory network that modulates vertebrate iron homeostasis. IRPs regulate iron metabolism by binding to iron responsive element(s) (IREs) in the 5′ or 3′ untranslated region of ferritin or transferrin receptor (TfR) mRNAs. Two IRPs, IRP1 and IRP2, have been identified previously. IRP1 exhibits two mutually exclusive functions as an RNA binding protein or as the cytosolic isoform of aconitase. We demonstrate that the Ba/F3 family of murine pro-B lymphocytes represents the first example of a mammalian cell line that fails to express IRP1 protein or mRNA. First, all of the IRE binding activity in Ba/F3-gp55 cells is attributable to IRP2. Second, synthesis of IRP2, but not of IRP1, is detectable in Ba/F3-gp55 cells. Third, the Ba/F3 family of cells express IRP2 mRNA at a level similar to other murine cell lines, but IRP1 mRNA is not detectable. In the Ba/F3 family of cells, alterations in iron status modulated ferritin biosynthesis and TfR mRNA level over as much as a 20- and 14-fold range, respectively. We conclude that IRP1 is not essential for regulation of ferritin or TfR expression by iron and that IRP2 can act as the sole IRE-dependent mediator of cellular iron homeostasis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Myotonic dystrophy (DM) is caused by the expansion of a trinucleotide repeat, CTG, in the 3′ untranslated region of a protein kinase gene, DMPK. We set out to determine what effect this expanded repeat has on RNA processing. The subcellular fractionation of RNA and the separate analysis of DMPK transcripts from each allele reveals that transcripts from expanded DMPK alleles are retained within the nucleus and are absent from the cytoplasm of DM cell lines. The nuclear retention of DMPK transcripts occurs above a critical threshold between 80 and 400 CTGs. Further analysis of the nuclear RNA reveals an apparent reduction in the proportion of expansion-derived DMPK transcripts after poly(A)+ selection. Quantitative analysis of RNA also indicates that although the level of cytoplasmic DMPK transcript is altered in DM patients, the levels of transcripts from 59 and DMAHP, two genes that immediately flank DMPK, are unaffected in DM cell lines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Myotonic dystrophy (DM) is associated with expansion of CTG repeats in the 3′-untranslated region of the myotonin protein kinase (DMPK) gene. The molecular mechanism whereby expansion of the (CUG)n repeats in the 3′-untranslated region of DMPK gene induces DM is unknown. We previously isolated a protein with specific binding to CUG repeat sequences (CUG-BP/hNab50) that possibly plays a role in mRNA processing and/or transport. Here we present evidence that the phosphorylation status and intracellular distribution of the RNA CUG-binding protein, identical to hNab50 protein (CUG-BP/hNab50), are altered in homozygous DM patient and that CUG-BP/hNab50 is a substrate for DMPK both in vivo and in vitro. Data from two biological systems with reduced levels of DMPK, homozygous DM patient and DMPK knockout mice, show that DMPK regulates both phosphorylation and intracellular localization of the CUG-BP/hNab50 protein. Decreased levels of DMPK observed in DM patients and DMPK knockout mice led to the elevation of the hypophosphorylated form of CUG-BP/hNab50. Nuclear concentration of the hypophosphorylated CUG-BP/hNab50 isoform is increased in DMPK knockout mice and in homozygous DM patient. DMPK also interacts with and phosphorylates CUG-BP/hNab50 protein in vitro. DMPK-mediated phosphorylation of CUG-BP/hNab50 results in dramatic reduction of the CUG-BP2, hypophosphorylated isoform, accumulation of which was observed in the nuclei of DMPK knockout mice. These data suggest a feedback mechanism whereby decreased levels of DMPK could alter phosphorylation status of CUG-BP/hNab50, thus facilitating nuclear localization of CUG-BP/hNab50. Our results suggest that DM pathophysiology could be, in part, a result of sequestration of CUG-BP/hNab50 and, in part, of lowered DMPK levels, which, in turn, affect processing and transport of specific subclass of mRNAs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite more than a century of debate, the evolutionary position of turtles (Testudines) relative to other amniotes (reptiles, birds, and mammals) remains uncertain. One of the major impediments to resolving this important evolutionary problem is the highly distinctive and enigmatic morphology of turtles that led to their traditional placement apart from diapsid reptiles as sole descendants of presumably primitive anapsid reptiles. To address this question, the complete (16,787-bp) mitochondrial genome sequence of the African side-necked turtle (Pelomedusa subrufa) was determined. This molecule contains several unusual features: a (TA)n microsatellite in the control region, the absence of an origin of replication for the light strand in the WANCY region of five tRNA genes, an unusually long noncoding region separating the ND5 and ND6 genes, an overlap between ATPase 6 and COIII genes, and the existence of extra nucleotides in ND3 and ND4L putative ORFs. Phylogenetic analyses of the complete mitochondrial genome sequences supported the placement of turtles as the sister group of an alligator and chicken (Archosauria) clade. This result clearly rejects the Haematothermia hypothesis (a sister-group relationship between mammals and birds), as well as rejecting the placement of turtles as the most basal living amniotes. Moreover, evidence from both complete mitochondrial rRNA genes supports a sister-group relationship of turtles to Archosauria to the exclusion of Lepidosauria (tuatara, snakes, and lizards). These results challenge the classic view of turtles as the only survivors of primary anapsid reptiles and imply that turtles might have secondarily lost their skull fenestration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phylogenetic trees for groups of closely related species often have different topologies, depending on the genes used. One explanation for the discordant topologies is the persistence of polymorphisms through the speciation phase, followed by differential fixation of alleles in the resulting species. The existence of transspecies polymorphisms has been documented for alleles maintained by balancing selection but not for neutral alleles. In the present study, transspecific persistence of neutral polymorphisms was tested in the endemic haplochromine species flock of Lake Victoria cichlid fish. Putative noncoding region polymorphisms were identified at four randomly selected nuclear loci and tested on a collection of 12 Lake Victoria species and their putative riverine ancestors. At all loci, the same polymorphism was found to be present in nearly all the tested species, both lacustrine and riverine. Different polymorphisms at these loci were found in cichlids of other East African lakes (Malawi and Tanganyika). The Lake Victoria polymorphisms must have therefore arisen after the flocks now inhabiting the three great lakes diverged from one another, but before the riverine ancestors of the Lake Victoria flock colonized the Lake. Calculations based on the mtDNA clock suggest that the polymorphisms have persisted for about 1.4 million years. To maintain neutral polymorphisms for such a long time, the population size must have remained large throughout the entire period.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An RNA transcribed from the antisense strand of the FGF-2 gene has been implicated in the regulation of FGF-2 mRNA stability in amphibian oocytes. We have now cloned and characterized a novel 1.1-kb mRNA (fgf-as) from neonatal rat liver. In non-central nervous system (CNS) tissues the fgf-as RNA is abundantly expressed in a developmentally regulated manner. The FGF-AS cDNA contains a consensus polyadenylylation signal and a long open reading frame (ORF) whose deduced amino acid sequence predicts a 35-kDa protein with homology to the MutT family of nucleotide hydrolases. Western blot analysis with antibodies against the deduced peptide sequence demonstrates that the FGF-AS protein is expressed in a broad range of non-CNS tissue in the postnatal period. In the developing brain, the abundance of sense and antisense transcripts are inversely related, suggesting a role for the antisense RNA in posttranscriptional regulation of FGF-2 expression in this tissue.The FGF-AS is complementary to two widely separated regions in the long 3′ untranslated region of the FGF-2 mRNA, in the vicinity of the proximal and distal polyadenylylation sites. These findings demonstrate that the FGF-2 and fgf-as RNAs are coordinately transcribed on a tissue-specific and developmentally regulated basis and suggest that interaction of the sense and antisense RNAs may result in posttranscriptional regulation of FGF-2 in some tissues.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) is a key regulator of developmental, physiological, and tumor angiogenesis. Upregulation of VEGF expression by hypoxia appears to be a critical step in the neovascularization of solid cancers. The VEGF mRNA is intrinsically labile, but in response to hypoxia the mRNA is stabilized. We have systematically analyzed the regions in the VEGF mRNA that are responsible for its lability under normoxic conditions and for stabilization in response to hypoxia. We find that the VEGF mRNA not only contains destabilizing elements in its 3′ untranslated region (3′UTR), but also contains destabilizing elements in the 5′UTR and coding region. Each region can independently promote mRNA degradation, and together they act additively to effect rapid degradation under normoxic conditions. Stabilization of the mRNA in response to hypoxia is completely dependent on the cooperation of elements in each of the 5′UTR, coding region, and 3′UTR. Combinations of any of two of these three regions were completely ineffective in responding to hypoxia, whereas combining all three regions allowed recapitulation of the hypoxic stabilization seen with the endogenous VEGF mRNA. We conclude that multiple regions in the VEGF mRNA cooperate both to ensure the rapid degradation of the mRNA under normoxic conditions and to allow stabilization of the mRNA in response to hypoxia. Our findings highlight the complexity of VEGF gene expression and also reveal a mechanism of gene regulation that could become the target for strategies of therapeutic intervention.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chlamydomonas reinhardtii flagellar regeneration is accompanied by rapid induction of genes encoding a large set of flagellar structural components and provides a model system to study coordinate gene regulation and organelle assembly. After deflagellation, the abundance of a 70-kDa flagellar dynein intermediate chain (IC70, encoded by ODA6) mRNA increases approximately fourfold within 40 min and returns to predeflagellation levels by ∼90 min. We show by nuclear run-on that this increase results, in part, from increased rates of transcription. To localize cis induction elements, we created an IC70 minigene and measured accumulation, in C. reinhardtii, of transcripts from the endogenous gene and from introduced promoter deletion constructs. Clones containing 416 base pairs (bp) of 5′- and 2 kilobases (kb) of 3′-flanking region retained all sequences necessary for a normal pattern of mRNA abundance change after deflagellation. Extensive 5′- and 3′- flanking region deletions, which removed multiple copies of a proposed deflagellation-response element (the tub box), did not eliminate induction, and the IC70 5′-flanking region alone did not confer deflagellation responsiveness to a promoterless arylsulfatase (ARS) gene. Instead, an intron in the IC70 gene 5′-untranslated region was found to contain the deflagellation response element. These results suggest that the tub box does not play an essential role in deflagellation-induced transcriptional regulation of this dynein gene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During oocyte maturation in Xenopus, previously quiescent maternal mRNAs are translationally activated at specific times. We hypothesized that the translational recruitment of individual messages is triggered by particular cellular events and investigated the potential for known effectors of the meiotic cell cycle to activate the translation of the FGF receptor-1 (XFGFR) maternal mRNA. We found that both c-mos and cdc2 activate the translation of XFGFR. However, although oocytes matured by injection of recombinant cdc2/cyclin B translate normal levels of XFGFR protein, c-mos depletion reduces the level of XFGFR protein induced by cdc2/cyclin B injection. In oocytes blocked for cdc2 activity, injection of mos RNA induced low levels of XFGFR protein, independent of MAPK activity. Through the use of injected reporter RNAs, we show that the XFGFR 3′ untranslated region inhibitory element is completely derepressed by cdc2 alone. In addition, we identified a new inhibitory element through which both mos and cdc2 activate translation. We found that cdc2 derepresses translation in the absence of polyadenylation, whereas mos requires poly(A) extension to activate XFGFR translation. Our results demonstrate that mos and cdc2, in addition to functioning as key regulators of the meiotic cell cycle, cooperate in the translational activation of a specific maternal mRNA during oocyte maturation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Circadian expression of the luciferin-binding protein (LBP) from the dinoflagellate Gonyaulax polyedra is regulated at the translational level. A small interval in the lbp 3′-untranslated region, which contains seven UG-repeats, serves as a cis-acting element to which a trans-acting factor (CCTR) binds in a circadian manner. Its binding activity correlates negatively with the circadian expression of LBP. Here I report the identification of a protein in the green alga Chlamydomonas reinhardtii that represents a CCTR analog. It binds both specifically and under control of the circadian clock to the UG-repeat region. The data show for the first time that circadian cis-elements implicated in translational regulation have been conserved during evolution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cytoplasmic polyadenylylation is an essential process that controls the translation of maternal mRNAs during early development and depends on two cis elements in the 3′ untranslated region: the polyadenylylation hexanucleotide AAUAAA and a U-rich cytoplasmic polyadenylylation element (CPE). In searching for factors that could mediate cytoplasmic polyadenylylation of mouse c-mos mRNA, which encodes a serine/threonine kinase necessary for oocyte maturation, we have isolated the mouse homolog of CPEB, a protein that binds to the CPEs of a number of mRNAs in Xenopus oocytes and is required for their polyadenylylation. Mouse CPEB (mCPEB) is a 62-kDa protein that binds to the CPEs of c-mos mRNA. mCPEB mRNA is present in the ovary, testis, and kidney; within the ovary, this RNA is restricted to oocytes. mCPEB shows 80% overall identity with its Xenopus counterpart, with a higher homology in the carboxyl-terminal portion, which contains two RNA recognition motifs and a cysteine/histidine repeat. Proteins from arthropods and nematodes are also similar to this region, suggesting an ancient and widely used mechanism to control polyadenylylation and translation.