36 resultados para 280105 Interfaces and Presentation (excl. Computer-Human Interaction)
Resumo:
One of the fundamental questions concerning expression and function of dimeric enzymes involves the impact of naturally occurring mutations on subunit assembly and heterodimer activity. This question is of particular interest for the human enzyme galactose-l-phosphate uridylyl-transferase (GALT), impairment of which results in the inherited metabolic disorder galactosemia, because many if not most patients studied to date are compound heterozygotes rather than true molecular homozygotes. Furthermore, the broad range of phenotypic severity observed in these patients raises the possibility that allelic combination, not just allelic constitution, may play some role in determining outcome. In the work described herein, we have selected two distinct naturally occurring null mutations of GALT, Q188R and R333W, and asked the questions (i) what are the impacts of these mutations on subunit assembly, and (ii) if heterodimers do form, are they active? To answer these questions, we have established a yeast system for the coexpression of epitope-tagged alleles of human GALT and investigated both the extent of specific GALT subunit interactions and the activity of defined heterodimer pools. We have found that both homodimers and heterodimers do form involving each of the mutant subunits tested and that both heterodimer pools retain substantial enzymatic activity. These results are significant not only in terms of their implications for furthering our understanding of galactosemia and GALT holoenzyme structure-function relationships but also because the system described may serve as a model for similar studies of other complexes composed of multiple subunits.
Resumo:
Transcription factor IIH (TFIIH) is a multisubunit protein complex essential for both the initiation of RNA polymerase class II (pol II)-catalyzed transcription and nucleotide excision repair of DNA. Recent studies have shown that TFIIH copurifies with the cyclin-dependent kinase (cdk)-activating kinase complex (CAK) that includes cdk7, cyclin H, and p36/MAT1. Here we report the isolation of two TFIIH-related complexes: TFIIH* and ERCC2/CAK. TFIIH* consists of a subset of the TFIIH complex proteins including ERCC3 (XPB), p62, p44, p41, and p34 but is devoid of detectable levels of ERCC2 (XPD) and CAK. ERCC2/CAK was isolated as a complex that exhibits CAK activity that cosediments with the three CAK components (cdk7, cyclin H, and p36/MAT1) as well as the ERCC2 (XPD) protein. TFIIH* can support pol II-catalyzed transcription in vitro with lower efficiency compared with TFIIH. This TFIIH*-dependent transcription reaction was stimulated by ERCC2/CAK. The ERCC2/CAK and TFIIH* complexes are each active in DNA repair as shown by their ability to complement extracts prepared from ERCC2 (XPD)- and ERCC3 (XPB)-deficient cells, respectively, in supporting the excision of DNA containing a cholesterol lesion. These data suggest that TFIIH* and ERCC2/CAK interact to form the TFIIH holoenzyme capable of efficiently assembling the pol II transcription initiation complex and directly participating in excision repair reactions.
Resumo:
Human endogenous retroviruses (HERVs) are very likely footprints of ancient germ-cell infections. HERV sequences encompass about 1% of the human genome. HERVs have retained the potential of other retroelements to retrotranspose and thus to change genomic structure and function. The genomes of almost all HERV families are highly defective. Recent progress has allowed the identification of the biologically most active family, HTDV/HERV-K, which codes for viral proteins and particles and is highly expressed in germ-cell tumors. The demonstrable and potential roles of HTDV/HERV-K as well as of other human elements in disease and in maintaining genome plasticity are illustrated.
Resumo:
Stimulatory guanine nucleotide binding protein (Gs)-coupled receptors activated by luteinizing hormone, vasopressin, and the catecholamine isoproterenol (luteinizing hormone receptor, type 2 vasopressin receptor, and types 1 and 2 beta-adrenergic receptors) and the Gi-coupled M2 muscarinic receptor (M2R) were expressed transiently in COS cells, alone and in combination with Gbeta gamma dimers, their corresponding Galphas (Galpha(s), or Galpha(i3)) and either Galpha(q) or Galpha(16). Phospholipase C (PLC) activity, assessed by inositol phosphate production from preincorporated myo[3H]inositol, was then determined to gain insight into differential coupling preferences among receptors and G proteins. The following were observed: (i) All receptors tested were able to stimulate PLC activity in response to agonist occupation. The effect of the M2R was pertussis toxin sensitive. (ii) While, as expected, expression of Galpha(q) facilitated an agonist-induced activation of PLC that varied widely from receptor to receptor (400% with type 2 vasopressin receptor and only 30% with M2R), expression of Galpha(16) facilitated about equally well the activation of PLC by any of the tested receptors and thus showed little if any discrimination for one receptor over another. (iii) Gbeta gamma elevated basal (agonist independent) PLC activity between 2- and 4-fold, confirming the proven ability of Gbeta gamma to stimulate PLCbeta. (iv) Activation of expressed receptors by their respective ligands in cells coexpressing excess Gbeta gamma elicited agonist stimulated PLC activities, which, in the case of the M2R, was not blocked by pertussis toxin (PTX), suggesting mediation by a PTX-insensitive PLC-stimulating Galpha subunit, presumably, but not necessarily, of the Gq family. (v) The effects of Gbeta gamma and the PTX-insensitive Galpha elicited by M2R were synergistic, suggesting the possibility that one or more forms of PLC are under conditional or dual regulation of G protein subunits such that stimulation by one sensitizes to the stimulation by the other.
Resumo:
The genome of the pufferfish (Fugu rubripes) (400 Mb) is approximately 7.5 times smaller than the human genome, but it has a similar gene repertoire to that of man. If regions of the two genomes exhibited conservation of gene order (i.e., were syntenic), it should be possible to reduce dramatically the effort required for identification of candidate genes in human disease loci by sequencing syntenic regions of the compact Fugu genome. We have demonstrated that three genes (dihydrolipoamide succinyltransferase, S31iii125, and S20i15), which are linked to FOS in the familial Alzheimer disease focus (AD3) on human chromosome 14, have homologues in the Fugu genome adjacent to Fugu cFOS. The relative gene order of cFOS, S31iii125, and S20i15 was the same in both genomes, but in Fugu these three genes lay within a 12.4-kb region, compared to >600 kb in the human AD3 locus. These results demonstrate the conservation of synteny between the genomes of Fugu and man and highlight the utility of this approach for sequence-based identification of genes in human disease loci.
Resumo:
Quinolinate (Quin), a metabolite in the kynurenine pathway of tryptophan degradation and a neurotoxin that appears to act through the N-methyl-D-aspartate receptor system, was localized in cultured human peripheral blood monocytes/macrophages (PBMOs) by using a recently developed immunocytochemical method. Quin immunoreactivity (Quin-IR) was increased in gamma interferon (IFN-gamma)-stimulated monocytes/macrophages (MOs). In addition, the precursors, tryptophan and kynurenine, significantly increased Quin-IR. Infection of MOs by human T-cell lymphotropic virus type I (HTLV-I) in vitro substantially increased both the number of Quin-IR cells and the intensity of Quin-IR. At the peak of the Quin-IR response, about 40% of the cells were Quin-IR positive. In contrast, only about 2-5% of the cells were positive for HTLV-I, as detected by both immunofluorescence for the HTLV-I antigens and PCR techniques for the HTLV-I Tax gene. These results suggest that HTLV-I-induced Quin production in MOs occurs by an indirect mechanism, perhaps via cytokines produced by the infection but not directly by the virus infection per se. The significance of these findings to the neuropathology of HTLV-I infection is discussed.
Resumo:
A dissociation between human neural systems that participate in the encoding and later recognition of new memories for faces was demonstrated by measuring memory task-related changes in regional cerebral blood flow with positron emission tomography. There was almost no overlap between the brain structures associated with these memory functions. A region in the right hippocampus and adjacent cortex was activated during memory encoding but not during recognition. The most striking finding in neocortex was the lateralization of prefrontal participation. Encoding activated left prefrontal cortex, whereas recognition activated right prefrontal cortex. These results indicate that the hippocampus and adjacent cortex participate in memory function primarily at the time of new memory encoding. Moreover, face recognition is not mediated simply by recapitulation of operations performed at the time of encoding but, rather, involves anatomically dissociable operations.
Resumo:
A polymorphic C-->T transition located on the human Y chromosome was found by the systematic comparative sequencing of Y-specific sequence-tagged sites by denaturing high-performance liquid chromatography. The results of genotyping representative global indigenous populations indicate that the locus is polymorphic exclusively within the Western Hemisphere. The pre-Columbian T allele occurs at > 90% frequency within the native South and Central American populations examined, while its occurrence in North America is approximately 50%. Concomitant genotyping at the polymorphic tetranucleotide microsatellite DYS19 locus revealed that the C-->T mutation displayed significant linkage disequilibrium with the 186-bp allele. The data suggest a single origin of linguistically diverse native Americans with subsequent haplotype differentiation within radiating indigenous populations as well as post-Columbian European and African gene flow. The mutation may have originated either in North America at a very early time during the expansion or before it, in the ancestral population(s) from which all Americans may have originated. The analysis of linkage of the DYS199 and the DYS19 tetranucleotide loci suggests that the C-->T mutation may have occurred around 30,000 years ago. We estimate the nucleotide diversity over 4.2 kb of the nonrecombining portion of the Y chromosome to be 0.00014. compared to autosomes, the majority of variation is due to the smaller effective population size of the Y chromosome rather than selective sweeps. There begins to emerge a pattern of pronounced geographical localization of Y-specific nucleotide substitution polymorphisms.
Resumo:
Because repeated injury of the endothelium and subsequent turnover of intimal and medial cells have been implicated in atherosclerosis, we examined telomere length, a marker of somatic cell turnover, in cells from these tissues. Telomere lengths were assessed by Southern analysis of terminal restriction fragments (TRFs) generated by HinfI/Rsa I digestion of human genomic DNA. Mean TRF length decreased as a function of population doublings in human endothelial cell cultures from umbilical veins, iliac arteries, and iliac veins. When endothelial cells were examined for mean TRF length as a function of donor age, there was a significantly greater rate of decrease for cells from iliac arteries than from iliac veins (102 bp/yr vs. 47 bp/yr, respectively, P < 0.05), consistent with higher hemodynamic stress and increased cell turnover in arteries. Moreover, the rate of telomere loss as a function of donor age was greater in the intimal DNA of iliac arteries compared to that of the internal thoracic arteries (147 bp/yr vs. 87 bp/yr, respectively, P < 0.05), a region of the arterial tree subject to less hemodynamic stress. This indicates that the effect is not tissue specific. DNA from the medial tissue of the iliac and internal thoracic arteries showed no significant difference in the rates of decrease, suggesting that chronic stress leading to cellular senescence is more pronounced in the intima than in the media. These observations extend the use of telomere size as a marker for the replicative history of cells and are consistent with a role for focal replicative senescence in cardiovascular diseases.
Resumo:
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor beta superfamily. Several members of this family have been shown to transduce their signals through binding to type I and type II serine-(threonine) kinase receptors. Here we report the cDNA cloning and characterization of a human type II receptor for BMPs (BMPR-II), which is distantly related to DAF-4, a BMP type II receptor from Caenorhabditis elegans. In transfected COS-1 cells, osteogenic protein (OP)-1/BMP-7, and less efficiently BMP-4, bound to BMPR-II. BMPR-II bound ligands only weakly alone, but the binding was facilitated by the presence of previously identified type I receptors for BMPs. Binding of OP-1/BMP-7 to BMPR-II was also observed in nontransfected cell lines. Moreover, a transcriptional activation signal was transduced by BMPR-II in the presence of type I receptors after stimulation by OP-1/BMP-7.
Resumo:
Transcription factor TFIIIB plays a central role in transcription initiation by RNA polymerase III on genes encoding tRNA, 5S rRNA, and other small structural RNAs. We report the purification of a human TFIIIB-derived complex containing only the TATA-binding polypeptide (TBP) and a 90-kDa subunit (TFIIIB90) and the isolation of a cDNA clone encoding the 90-kDa subunit. The N-terminal half of TFIIIB90 exhibits sequence similarity to the yeast TFIIIB70 (BRF) and the class II transcription factor TFIIB and interacts weakly with TBP. The C-terminal half of TFIIIB90 contains a high-mobility-group protein 2 (HMG2)-related domain and interacts strongly with TBP. Recombinant TFIIIB90 plus recombinant human TBP substitute for human TFIIIB in a complementation assay for transcription of 5S, tRNA, and VA1 RNA genes, and both the TFIIB-related domain and the HMG2-related domain are required for this activity. TFIIIB90 is also required for transcription of human 7SK and U6 RNA genes by RNA polymerase III, but apparently within a complex distinct from the TBP/TFIIIB90 complex.
Resumo:
Many human malignant cells lack methylthioadenosine phosphorylase (MTAP) enzyme activity. The gene (MTAP) encoding this enzyme was previously mapped to the short arm of chromosome 9, band p21-22, a region that is frequently deleted in multiple tumor types. To clone candidate tumor suppressor genes from the deleted region on 9p21-22, we have constructed a long-range physical map of 2.8 megabases for 9p21 by using overlapping yeast artificial chromosome and cosmid clones. This map includes the type IIFN gene cluster, the recently identified candidate tumor suppressor genes CDKN2 (p16INK4A) and CDKN2B (p15INK4B), and several CpG islands. In addition, we have identified other transcription units within the yeast artificial chromosome contig. Sequence analysis of a 2.5-kb cDNA clone isolated from a CpG island that maps between the IFN genes and CDKN2 reveals a predicted open reading frame of 283 amino acids followed by 1302 nucleotides of 3' untranslated sequence. This gene is evolutionarily conserved and shows significant amino acid homologies to mouse and human purine nucleoside phosphorylases and to a hypothetical 25.8-kDa protein in the pet gene (coding for cytochrome bc1 complex) region of Rhodospirillum rubrum. The location, expression pattern, and nucleotide sequence of this gene suggest that it codes for the MTAP enzyme.
Resumo:
Viruses such as human immunodeficiency virus (HIV) require cellular activation for expression. Cellular activation in lymphoid cells is associated with augmented accumulation of certain phosphatidic acid (PA) species derived from the hydrolysis of glycan phosphatidylinositol (GPI). This suggests that activation of a phospholipid pathway may play a role in initiation of viral replication. To test this hypothesis, we examined the effect of tat gene expression on the production of cellular PA species, as the Tat protein is essential for HIV expression and has been implicated in activating the expression of multiple host cellular genes. Expression of tat increased the expression of PA. We then tested whether synthetic inhibitors of PA metabolism would inhibit activation of the HIV long terminal repeat by Tat and tumor necrosis factor alpha (TNF-alpha). CT-2576 suppressed both PA generation induced by Tat and HIV long terminal repeat-directed gene expression in response to Tat or TNF-alpha at a posttranscriptional step. CT-2576 also inhibited constitutive as well as TNF-alpha- and interleukin 6-induced expression of HIV p24 antigen in chronically infected U1 cells and in peripheral blood lymphocytes acutely infected with a clinical isolate of HIV. Pharmacological inhibition of synthesis of selected PA species may therefore provide a therapeutic approach to suppression of HIV replication.
Resumo:
The trimeric human single-stranded DNA-binding protein (HSSB; also called RP-A) plays an essential role in DNA replication, nucleotide excision repair, and homologous DNA recombination. The p34 subunit of HSSB is phosphorylated at the G1/S boundary of the cell cycle or upon exposure of cells to DNA damage-inducing agents including ionizing and UV radiation. We have previously shown that the phosphorylation of p34 is catalyzed by both cyclin-dependent kinase-cyclin A complex and DNA-dependent protein kinase. In this study, we investigated the effect of phosphorylation of p34 by these kinases on the replication and repair function of HSSB. We observed no significant difference with the unphosphorylated and phosphorylated forms of HSSB in the simian virus 40 DNA replication or nucleotide excision repair systems reconstituted with purified proteins. The phosphorylation status of the p34 subunit of HSSB was unchanged during the reactions. We suggest that the phosphorylated HSSB has no direct effect on the basic mechanism of DNA replication and nucleotide excision repair reactions in vitro, although we cannot exclude a role of p34 phosphorylation in modulating HSSB function in vivo through a yet poorly understood control pathway in the cellular response to DNA damage and replication.
Resumo:
We present data on the decay, after radiotherapy, of naive and memory human T lymphocytes with stable chromosome damage. These data are analyzed in conjunction with existing data on the decay of naive and memory T lymphocytes with unstable chromosome damage and older data on unsorted lymphocytes. The analyses yield in vivo estimates for some life-history parameters of human T lymphocytes. Best estimates of proliferation rates have naive lymphocytes dividing once every 3.5 years and memory lymphocytes dividing once every 22 weeks. It appears that memory lymphocytes can revert to the naive phenotype, but only, on average, after 3.5 years in the memory class. The lymphocytes with stable chromosome damage decay very slowly, yielding surprisingly low estimates of their death rate. The estimated parameters are used in a simple mathematical model of the population dynamics of undamaged naive and memory lymphocytes. We use this model to illustrate that it is possible for the unprimed subset of a constantly stimulated clone to stay small, even when there is a large population of specific primed cells reverting to the unprimed state.