26 resultados para 1,5-dihydro-2-pyrrolones
Resumo:
The green alga Chlamydomonas reinhardtii mutant 76–5EN lacks photosynthesis because of a nuclear-gene mutation that specifically inhibits expression of the chloroplast gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39). Photosynthesis-competent revertants were selected from mutant 76–5EN to explore the possibility of increasing Rubisco expression. Genetic analysis of 10 revertants revealed that most arose from suppressor mutations in nuclear genes distinct from the original 76–5EN mutant gene. The revertant strains have regained various levels of Rubisco holoenzyme, but none of the suppressor mutations increased Rubisco expression above the wild-type level in either the presence or absence of the 76–5EN mutation. One suppressor mutation, S107–4B, caused a temperature-conditional, photosynthesis-deficient phenotype in the absence of the original 76–5EN mutation. The S107–4B strain was unable to grow photosynthetically at 35°C, but it expressed a substantial level of Rubisco holoenzyme. Whereas the 76–5EN gene encodes a nuclear factor that appears to be required for the transcription of the Rubisco large-subunit gene, the S107–4B nuclear gene may be required for the expression of other chloroplast genes.
Resumo:
The pyrenoid is a proteinaceous structure found in the chloroplast of most unicellular algae. Various studies indicate that ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is present in the pyrenoid, although the fraction of Rubisco localized there remains controversial. Estimates of the amount of Rubisco in the pyrenoid of Chlamydomonas reinhardtii range from 5% to nearly 100%. Using immunolocalization, the amount of Rubisco localized to the pyrenoid or to the chloroplast stroma was estimated for C. reinhardtii cells grown under different conditions. It was observed that the amount of Rubisco in the pyrenoid varied with growth condition; about 40% was in the pyrenoid when the cells were grown under elevated CO2 and about 90% with ambient CO2. In addition, it is likely that pyrenoidal Rubisco is active in CO2 fixation because in vitro activity measurements showed that most of the Rubisco must be active to account for CO2-fixation rates observed in whole cells. These results are consistent with the idea that the pyrenoid is the site of CO2 fixation in C. reinhardtii and other unicellular algae containing CO2-concentrating mechanisms.
Resumo:
We tested the hypothesis that light activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is inhibited by moderately elevated temperature through an effect on Rubisco activase. When cotton (Gossypium hirsutum L.) or wheat (Triticum aestivum L.) leaf tissue was exposed to increasing temperatures in the light, activation of Rubisco was inhibited above 35 and 30°C, respectively, and the relative inhibition was greater for wheat than for cotton. The temperature-induced inhibition of Rubisco activation was fully reversible at temperatures below 40°C. In contrast to activation state, total Rubisco activity was not affected by temperatures as high as 45°C. Nonphotochemical fluorescence quenching increased at temperatures that inhibited Rubisco activation, consistent with inhibition of Calvin cycle activity. Initial and maximal chlorophyll fluorescence were not significantly altered until temperatures exceeded 40°C. Thus, electron transport, as measured by Chl fluorescence, appeared to be more stable to moderately elevated temperatures than Rubisco activation. Western-blot analysis revealed the formation of high-molecular-weight aggregates of activase at temperatures above 40°C for both wheat and cotton when inhibition of Rubisco activation was irreversible. Physical perturbation of other soluble stromal enzymes, including Rubisco, phosphoribulokinase, and glutamine synthetase, was not detected at the elevated temperatures. Our evidence indicates that moderately elevated temperatures inhibit light activation of Rubisco via a direct effect on Rubisco activase.
Resumo:
A cDNA of pea (Pisum sativum L.) RbcS 3A, encoding a small subunit protein (S) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), has been expressed in Arabidopsis thaliana under control of the cauliflower mosaic virus 35S promoter, and the transcript and mature S protein were detected. Specific antibodies revealed two protein spots for the four Arabidopsis S and one additional spot for pea S. Pea S in chimeric Rubisco amounted to 15 to 18% of all S, as judged by separation on two-dimensional isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels from partially purified enzyme preparations and quantitation of silver-stained protein spots. The chimeric enzyme had 11 ± 1% fewer carbamylated sites and a 11 ± 1% lower carboxylase activity than wild-type Arabidopsis Rubisco. Whereas pea S expression, preprotein transport, and processing and assembly resulted in a stable holoenzyme, the chimeric enzyme was reproducibly catalytically less efficient. We suggest that the presence of, on average, one foreign S per holoenzyme is responsible for the altered activity. In addition, higher-plant Rubisco, unlike the cyanobacterial enzyme, seems to have evolved species-specific interactions between S and the large subunit protein that are involved in carbamylation of the active site.
Resumo:
Genetic background of the T cell can influence T helper (Th) phenotype development, with some murine strains (e.g., B10.D2) favoring Th1 development and others (e.g., BALB/c) favoring Th2 development. Recently we found that B10.D2 exhibit an intrinsically greater capacity to maintain interleukin 12 (IL-12) responsiveness under neutral conditions in vitro compared with BALB/c T cells, allowing for prolonged capacity to undergo IL-12-induced Th1 development. To begin identification of the loci controlling this genetic effect, we used a T-cell antigen receptor-transgenic system for in vitro analysis of intercrosses between BALB/c and B10.D2 mice and have identified a locus on murine chromosome 11 that controls the maintenance of IL-12 responsiveness, and therefore the subsequent Th1/Th2 response. This chromosomal region is syntenic with a locus on human chromosome 5q31.1 shown to be associated with elevated serum IgE levels, suggesting that genetic control of Th1/Th2 differentiation in mouse, and of atopy development in humans, may be expressed through similar mechanisms.
Resumo:
The activation of protein kinases is a frequent response of cells to treatment with growth factors, chemicals, heat shock, or apoptosis-inducing agents. However, when several agents result in the activation of the same enzymes, it is unclear how specific biological responses are generated. We describe here two protein kinases that are activated by a subset of stress conditions or apoptotic agents but are not activated by commonly used mitogenic stimuli. Purification and cloning demonstrate that these protein kinases are members of a subfamily of kinases related to Ste20p, a serine/threonine kinase that functions early in a pheromone responsive signal transduction cascade in yeast. The specificity of Krs-1 and Krs-2 activation and their similarity to Ste20p suggest that they may function at an early step in phosphorylation events that are specific responses to some forms of chemical stress or extreme heat shock.
Resumo:
The chloroethylnitrosourea (CNU) alkylating agents are commonly used for cancer chemotherapy, but their usefulness is limited by severe bone marrow toxicity that causes the cumulative depletion of all hematopoietic lineages (pancytopenia). Bone marrow CNU sensitivity is probably due to the inefficient repair of CNU-induced DNA damage; relative to other tissues, bone marrow cells express extremely low levels of the O6-methylguanine DNA methyltransferase (MGMT) protein that repairs cytotoxic O6-chloroethylguanine DNA lesions. Using a simplified recombinant retroviral vector expressing the human MGMT gene under control of the phosphoglycerate kinase promoter (PGK-MGMT) we increased the capacity of murine bone marrow-derived cells to repair CNU-induced DNA damage. Stable reconstitution of mouse bone marrow with genetically modified, MGMT-expressing hematopoietic stem cells conferred considerable resistance to the cytotoxic effects of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), a CNU commonly used for chemotherapy. Bone marrow harvested from mice transplanted with PGK-MGMT-transduced cells showed extensive in vitro BCNU resistance. Moreover, MGMT expression in mouse bone marrow conferred in vivo resistance to BCNU-induced pancytopenia and significantly reduced BCNU-induced mortality due to bone marrow hypoplasia. These data demonstrate that increased DNA alkylation repair in primitive hematopoietic stem cells confers multilineage protection from the myelosuppressive effects of BCNU and suggest a possible approach to protecting cancer patients from CNU chemotherapy-related toxicity.
Resumo:
The aquaporins (AQPs) are a family of homologous water-channel proteins that can be inserted into epithelial cell plasma membranes either constitutively (AQP1) or by regulated exocytosis following vasopressin stimulation (AQP2). LLC-PK1 porcine renal epithelial cells were stably transfected with cDNA encoding AQP2 (tagged with a C-terminal c-Myc epitope) or rat kidney AQP1 cDNA in an expression vector containing a cytomegalovirus promoter. Immunofluorescence staining revealed that AQP1 was mainly localized to the plasma membrane, whereas AQP2 was predominantly located on intracellular vesicles. After treatment with vasopressin or forskolin for 10 min, AQP2 was relocated to the plasma membrane, indicating that this relocation was induced by cAMP. The location of AQP1 did not change. The basal water permeability of AQP1-transfected cells was 2-fold greater than that of nontransfected cells, whereas the permeability of AQP2-transfected cells increased significantly only after vasopressin treatment. Endocytotic uptake of fluorescein isothiocyanate-coupled dextran was stimulated 6-fold by vasopressin in AQP2-transfected cells but was only slightly increased in wild-type or AQP1-transfected cells. This vasopressin-induced endocytosis was inhibited in low-K+ medium, which selectively affects clathrin-mediated endocytosis. These water channel-transfected cells represent an in vitro system that will allow the detailed dissection of mechanisms involved in the processing, targeting, and trafficking of proteins via constitutive versus regulated intracellular transport pathways.
Resumo:
Methylation of cytosine residues in DNA plays an important role in regulating gene expression during vertebrate embryonic development. Conversely, disruption of normal patterns of methylation is common in tumors and occurs early in progression of some human cancers. In vertebrates, it appears that the same DNA methyltransferase maintains preexisting patterns of methylation during DNA replication and carries out de novo methylation to create new methylation patterns. There are several indications that inherent signals in DNA structure can act in vivo to initiate or block de novo methylation in adjacent DNA regions. To identify sequences capable of enhancing de novo methylation of DNA in vitro, we designed a series of oligodeoxyribonucleotide substrates with substrate cytosine residues in different sequence contexts. We obtained evidence that some 5-methylcytosine residues in these single-stranded DNAs can stimulate de novo methylation of adjacent sites by murine DNA 5-cytosine methyltransferase as effectively as 5-methylcytosine residues in double-stranded DNA stimulate maintenance methylation. This suggests that double-stranded DNA may not be the primary natural substrate for de novo methylation and that looped single-stranded structures formed during the normal course of DNA replication or repair serve as "nucleation" sites for de novo methylation of adjacent DNA regions.
Resumo:
Functional magnetic resonance imaging (fMRI) is a tool for mapping brain function that utilizes neuronal activity-induced changes in blood oxygenation. An efficient three-dimensional fMRI method is presented for imaging brain activity on conventional, widely available, 1.5-T scanners, without additional hardware. This approach uses large magnetic susceptibility weighting based on the echo-shifting principle combined with multiple gradient echoes per excitation. Motor stimulation, induced by self-paced finger tapping, reliably produced significant signal increase in the hand region of the contralateral primary motor cortex in every subject tested.
Resumo:
Although only 44% identical to human karyopherin alpha 1, human karyopherin alpha 2 (Rch1 protein) substituted for human karyopherin alpha 1 (hSRP-1/NPI-1) in recognizing a standard nuclear localization sequence and karyopherin beta-dependent targeting to the nuclear envelope of digitonin-permeabilized cells. By immunofluorescence microscopy of methanol-fixed cells, karyopherin beta was localized to the cytoplasm and the nuclear envelope and was absent from the nuclear interior. Digitonin permeabilization of buffalo rat liver cells depleted their endogenous karyopherin beta. Recombinant karyopherin beta can bind directly to the nuclear envelope of digitonin-permeabilized cells at 0 degree C (docking reaction). In contrast, recombinant karyopherin alpha 1 or alpha 2 did not bind unless karyopherin beta was present. Likewise, in an import reaction (at 20 degrees C) with all recombinant transport factors (karyopherin alpha 1 or alpha 2, karyopherin beta, Ran, and p10) import depended on karyopherin beta. Localization of the exogenously added transport factors after a 30-min import reaction showed karyopherin beta at the nuclear envelope and karyopherin alpha 1 or alpha 2, Ran, and p10 in the nuclear interior. In an overlay assay with SDS/PAGE-resolved and nitrocellulose-transferred proteins of the nuclear envelope, 35S-labeled karyopherin beta bound to at least four peptide repeat-containing nucleoporins--Nup358, Nup214, Nup153, and Nup98.