385 resultados para Yeast Ras


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The highly conserved small GTPase Cdc42p is a key regulator of cell polarity and cytoskeletal organization in eukaryotic cells. Multiple effectors of Cdc42p have been identified, although it is unclear how their activities are coordinated to produce particular cell behaviors. One strategy used to address the contributions made by different effector pathways downstream of small GTPases has been the use of “effector-loop” mutants of the GTPase that selectively impair only a subset of effector pathways. We now report the generation and preliminary characterization of a set of effector-loop mutants of Saccharomyces cerevisiae CDC42. These mutants define genetically separable pathways influencing actin or septin organization. We have characterized the phenotypic defects of these mutants and the binding defects of the encoded proteins to known yeast Cdc42p effectors in vitro. The results suggest that these effectors cannot account for the observed phenotypes, and therefore that unknown effectors exist that affect both actin and septin organization. The availability of partial function alleles of CDC42 in a genetically tractable system serves as a useful starting point for genetic approaches to identify such novel effectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hsk1, Saccharomyces cerevisiae Cdc7-related kinase in Shizosaccharomyces pombe, is required for G1/S transition and its kinase activity is controlled by the regulatory subunit Dfp1/Him1. Analyses of a newly isolated temperature-sensitive mutant, hsk1-89, reveal that Hsk1 plays crucial roles in DNA replication checkpoint signaling and maintenance of proper chromatin structures during mitotic S phase through regulating the functions of Rad3 (ATM)-Cds1 and Rad21 (cohesin), respectively, in addition to expected essential roles for initiation of mitotic DNA replication through phosphorylating Cdc19 (Mcm2). Checkpoint defect in hsk1-89 is indicated by accumulation of cut cells at 30°C. hsk1-89 displays synthetic lethality in combination with rad3 deletion, indicating that survival of hsk1-89 depends on Rad3-dependent checkpoint pathway. Cds1 kinase activation, which normally occurs in response to early S phase arrest by nucleotide deprivation, is largely impaired in hsk1-89. Furthermore, Cds1-dependent hyperphosphorylation of Dfp1 in response to hydroxyurea arrest is eliminated in hsk1-89, suggesting that sufficient activation of Hsk1-Dfp1 kinase is required for S phase entry and replication checkpoint signaling. hsk1-89 displays apparent defect in mitosis at 37°C leading to accumulation of cells with near 2C DNA content and with aberrant nuclear structures. These phenotypes are similar to those of rad21-K1 and are significantly enhanced in a hsk1-89 rad21-K1 double mutant. Consistent with essential roles of Rad21 as a component for the cohesin complex, sister chromatid cohesion is partially impaired in hsk1-89, suggesting a possibility that infrequent origin firing of the mutant may affect the cohesin functions during S phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aip3p is an actin-interacting protein that regulates cell polarity in budding yeast. The Schizosaccharomyces pombe-sequencing project recently led to the identification of a homologue of Aip3p that we have named spAip3p. Our results confirm that spAip3p is a true functional homologue of Aip3p. When expressed in budding yeast, spAip3p localizes similarly to Aip3p during the cell cycle and complements the cell polarity defects of an aip3Δ strain. Two-hybrid analysis shows that spAip3p interacts with actin similarly to Aip3p. In fission yeast, spAip3p localizes to both cell ends during interphase and later organizes into two rings at the site of cytokinesis. spAip3p localization to cell ends is dependent on microtubule cytoskeleton, its localization to the cell middle is dependent on actin cytoskeleton, and both patterns of localization require an operative secretory pathway. Overexpression of spAip3p disrupts the actin cytoskeleton and cell polarity, leading to morphologically aberrant cells. Fission yeast, which normally rely on the microtubule cytoskeleton to establish their polarity axis, can use the actin cytoskeleton in the absence of microtubule function to establish a new polarity axis, leading to the formation of branched cells. spAip3p localizes to, and is required for, branch formation, confirming its role in actin-directed polarized cell growth in both Schizosaccharomyces pombe and Saccharomyces cerevisiae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Membrane and secretory proteins fold in the endoplasmic reticulum (ER), and misfolded proteins may be retained and targeted for ER-associated protein degradation (ERAD). To elucidate the mechanism by which an integral membrane protein in the ER is degraded, we studied the fate of the cystic fibrosis transmembrane conductance regulator (CFTR) in the yeast Saccharomyces cerevisiae. Our data indicate that CFTR resides in the ER and is stabilized in strains defective for proteasome activity or deleted for the ubiquitin-conjugating enzymes Ubc6p and Ubc7p, thus demonstrating that CFTR is a bona fide ERAD substrate in yeast. We also found that heat shock protein 70 (Hsp70), although not required for the degradation of soluble lumenal ERAD substrates, is required to facilitate CFTR turnover. Conversely, calnexin and binding protein (BiP), which are required for the proteolysis of ER lumenal proteins in both yeast and mammals, are dispensable for the degradation of CFTR, suggesting unique mechanisms for the disposal of at least some soluble and integral membrane ERAD substrates in yeast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We characterized the novel Schizosaccharomyces pombe genes myo4+ and myo5+, both of which encode myosin-V heavy chains. Disruption of myo4 caused a defect in cell growth and led to an abnormal accumulation of secretory vesicles throughout the cytoplasm. The mutant cells were rounder than normal, although the sites for cell polarization were still established. Elongation of the cell ends and completion of septation required more time than in wild-type cells, indicating that Myo4 functions in polarized growth both at the cell ends and during septation. Consistent with this conclusion, Myo4 was localized around the growing cell ends, the medial F-actin ring, and the septum as a cluster of dot structures. In living cells, the dots of green fluorescent protein-tagged Myo4 moved rapidly around these regions. The localization and movement of Myo4 were dependent on both F-actin cables and its motor activity but seemed to be independent of microtubules. Moreover, the motor activity of Myo4 was essential for its function. These results suggest that Myo4 is involved in polarized cell growth by moving with a secretory vesicle along the F-actin cables around the sites for polarization. In contrast, the phenotype of myo5 null cells was indistinguishable from that of wild-type cells. This and other data suggest that Myo5 has a role distinct from that of Myo4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two yeast genes, FRE1 and FRE2 (encoding Fe(III) reductases) were placed under the control of the cauliflower mosaic virus 35S promoter and introduced into tobacco (Nicotiana tabacum L.) via Agrobacterium tumefaciens-mediated transformation. Homozygous lines containing FRE1, FRE2, or FRE1 plus FRE2 were generated. Northern-blot analyses revealed mRNA of two different sizes in FRE1 lines, whereas all FRE2 lines had mRNA only of the expected length. Fe(III) reduction, chlorophyll contents, and Fe levels were determined in transgenic and control plants under Fe-sufficient and Fe-deficient conditions. In a normal growth environment, the highest root Fe(III) reduction, 4-fold higher than in controls, occurred in the double transformant (FRE1 + FRE2). Elevated Fe(III) reduction was also observed in all FRE2 and some FRE1 lines. The increased Fe(III) reduction occurred along the entire length of the roots and on shoot sections. FRE2 and double transformants were more tolerant to Fe deficiency in hydroponic culture, as shown by higher chlorophyll and Fe concentrations in younger leaves, whereas FRE1 transformants did not differ from the controls. Overall, the beneficial effects of FRE2 were consistent, suggesting that FRE2 may be used to improve Fe efficiency in crop plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cDNA clone encoding a homolog of the yeast (Saccharomyces cerevisiae) gene Anti-oxidant 1 (ATX1) has been identified from Arabidopsis. This gene, referred to as Copper CHaperone (CCH), encodes a protein that is 36% identical to the amino acid sequence of ATX1 and has a 48-amino acid extension at the C-terminal end, which is absent from ATX1 homologs identified in animals. ATX1-deficient yeast (atx1) displayed a loss of high-affinity iron uptake. Expression of CCH in the atx1 strain restored high-affinity iron uptake, demonstrating that CCH is a functional homolog of ATX1. When overexpressed in yeast lacking the superoxide dismutase gene SOD1, both ATX1 and CCH protected the cell from the reactive oxygen toxicity that results from superoxide dismutase deficiency. CCH was unable to rescue the sod1 phenotype in the absence of copper, indicating that CCH function is copper dependent. In Arabidopsis CCH mRNA is present in the root, leaf, and inflorescence and is up-regulated 7-fold in leaves undergoing senescence. In plants treated with 800 nL/L ozone for 30 min, CCH mRNA levels increased by 30%. In excised leaves and whole plants treated with high levels of exogenous CuSO4, CCH mRNA levels decreased, indicating that CCH is regulated differently than characterized metallothionein proteins in Arabidopsis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

V-type proton-translocating ATPases (V-ATPases) (EC 3.6.1.3) are electrogenic proton pumps involved in acidification of endomembrane compartments in all eukaryotic cells. V-ATPases from various species consist of 8 to 12 polypeptide subunits arranged into an integral membrane proton pore sector (V0) and a peripherally associated catalytic sector (V1). Several V-ATPase subunits are functionally and structurally conserved among all species examined. In yeast, a 36-kD peripheral subunit encoded by the yeast (Saccharomyces cerevisiae) VMA6 gene (Vma6p) is required for stable assembly of the V0 sector as well as for V1 attachment. Vma6p has been characterized as a nonintegrally associated V0 subunit. A high degree of sequence similarity among Vma6p homologs from animal and fungal species suggests that this subunit has a conserved role in V-ATPase function. We have characterized a novel Vma6p homolog from red beet (Beta vulgaris) tonoplast membranes. A 44-kD polypeptide cofractionated with V-ATPase upon gel-filtration chromatography of detergent-solubilized tonoplast membranes and was specifically cross-reactive with anti-Vma6p polyclonal antibodies. The 44-kD polypeptide was dissociated from isolated tonoplast preparations by mild chaotropic agents and thus appeared to be nonintegrally associated with the membrane. The putative 44-kD homolog appears to be structurally similar to yeast Vma6p and occupies a similar position within the holoenzyme complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular reaction mechanism of the GTPase-activating protein (GAP)-catalyzed GTP hydrolysis by Ras was investigated by time resolved Fourier transform infrared (FTIR) difference spectroscopy using caged GTP (P3-1-(2-nitro)phenylethyl guanosine 5′-O-triphosphate) as photolabile trigger. This approach provides the complete GTPase reaction pathway with time resolution of milliseconds at the atomic level. Up to now, one structural model of the GAP⋅Ras⋅GDP⋅AlFx transition state analog is known, which represents a “snap shot” along the reaction-pathway. As now revealed, binding of GAP to Ras⋅GTP shifts negative charge from the γ to β phosphate. Such a shift was already identified by FTIR in GTP because of Ras binding and is now shown to be enhanced by GAP binding. Because the charge distribution of the GAP⋅Ras⋅GTP complex thus resembles a more dissociative-like transition state and is more like that in GDP, the activation free energy is reduced. An intermediate is observed on the reaction pathway that appears when the bond between β and γ phosphate is cleaved. In the intermediate, the released Pi is strongly bound to the protein and surprisingly shows bands typical of those seen for phosphorylated enzyme intermediates. All these results provide a mechanistic picture that is different from the intrinsic GTPase reaction of Ras. FTIR analysis reveals the release of Pi from the protein complex as the rate-limiting step for the GAP-catalyzed reaction. The approach presented allows the study not only of single proteins but of protein–protein interactions without intrinsic chromophores, in the non-crystalline state, in real time at the atomic level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular identification of ion channels in internal membranes has made scant progress compared with the study of plasma membrane ion channels. We investigated a prominent voltage-dependent, cation-selective, and calcium-activated vacuolar ion conductance of 320 pS (yeast vacuolar conductance, YVC1) in Saccharomyces cerevisiae. Here we report on a gene, the deduced product of which possesses significant homology to the ion channel of the transient receptor potential (TRP) family. By using a combination of gene deletion and re-expression with direct patch clamping of the yeast vacuolar membrane, we show that this yeast TRP-like gene is necessary for the YVC1 conductance. In physiological conditions, tens of micromolar cytoplasmic Ca2+ activates the YVC1 current carried by cations including Ca2+ across the vacuolar membrane. Immunodetection of a tagged YVC1 gene product indicates that YVC1 is primarily localized in the vacuole and not other intracellular membranes. Thus we have identified the YVC1 vacuolar/lysosomal cation-channel gene. This report has implications for the function of TRP channels in other organisms and the possible molecular identification of vacuolar/lysosomal ion channels in other eukaryotes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The MMS19 gene of the yeast Saccharomyces cerevisiae encodes a polypeptide of unknown function which is required for both nucleotide excision repair (NER) and RNA polymerase II (RNAP II) transcription. Here we report the molecular cloning of human and mouse orthologs of the yeast MMS19 gene. Both human and Drosophila MMS19 cDNAs correct thermosensitive growth and sensitivity to killing by UV radiation in a yeast mutant deleted for the MMS19 gene, indicating functional conservation between the yeast and mammalian gene products. Alignment of the translated sequences of MMS19 from multiple eukaryotes, including mouse and human, revealed the presence of several conserved regions, including a HEAT repeat domain near the C-terminus. The presence of HEAT repeats, coupled with functional complementation of yeast mutant phenotypes by the orthologous protein from higher eukaryotes, suggests a role of Mms19 protein in the assembly of a multiprotein complex(es) required for NER and RNAP II transcription. Both the mouse and human genes are ubiquitously expressed as multiple transcripts, some of which appear to derive from alternative splicing. The ratio of different transcripts varies in several different tissue types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During meiosis II in the yeast Saccharomyces cerevisiae, the cytoplasmic face of the spindle pole body changes from a site of microtubule initiation to a site of de novo membrane formation. These membranes are required to package the haploid meiotic products into spores. This functional change in the spindle pole body involves the expansion and modification of its cytoplasmic face, termed the outer plaque. We report here that SPO21 is required for this modification. The Spo21 protein localizes to the spindle pole in meiotic cells. In the absence of SPO21 the structure of the outer plaque is abnormal, and prospore membranes do not form. Further, decreased dosage of SPO21 leaves only two of the four spindle pole bodies competent to generate membranes. Mutation of CNM67, encoding a known component of the mitotic outer plaque, also results in a meiotic outer plaque defect but does not block membrane formation, suggesting that Spo21p may play a direct role in initiating membrane formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxysterol binding protein (OSBP) is the only protein known to bind specifically to the group of oxysterols with potent effects on cholesterol homeostasis. Although the function of OSBP is currently unknown, an important role is implicated by the existence of multiple homologues in all eukaryotes so far examined. OSBP and a subset of homologues contain pleckstrin homology (PH) domains. Such domains are responsible for the targeting of a wide range of proteins to the plasma membrane. In contrast, OSBP is a peripheral protein of Golgi membranes, and its PH domain targets to the trans-Golgi network of mammalian cells. In this article, we have characterized Osh1p, Osh2p, and Osh3p, the three homologues of OSBP in Saccharomyces cerevisiae that contain PH domains. Examination of a green fluorescent protein (GFP) fusion to Osh1p revealed a striking dual localization with the protein present on both the late Golgi, and in the recently described nucleus-vacuole (NV) junction. Deletion mapping revealed that the PH domain of Osh1p specified targeting to the late Golgi, and an ankyrin repeat domain targeting to the NV junction, the first such targeting domain identified for this structure. GFP fusions to Osh2p and Osh3p showed intracellular distributions distinct from that of Osh1p, and their PH domains appear to contribute to their differing localizations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypertonic shock of Saccharomyces cerevisiae activates the Hog1p MAP kinase cascade. In contrast, protein kinase C (Pkc1p) and the “cell integrity” MAP kinase cascade are critical for the response to hypotonic shock. We observed that hypertonic shock transiently relocated many, but not all, nuclear and nucleolar proteins to the cytoplasm. We hypothesized that the relocation of nuclear proteins was due to activation of the Hog1p kinase cascade, yet, surprisingly, Hog1p was not required for these effects. In contrast, Pkc1p kinase activity was required, although the Pkc1p MAP kinase cascade and several factors known to lie upstream and downstream of Pkc1p were not. Moreover, sudden induction of a hyperactive form of Pkc1p was sufficient to relocate nuclear proteins. Taken together, these observations show that the scope of involvement of Pkc1p in the organization of the nucleus considerably exceeds what has been characterized previously. The relocation of nuclear proteins is likely to account for the profound inhibition of RNA synthesis that was observed during hypertonic shock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the production of hyaluronan (HA) and its effect on cell motility in cells expressing the v-src mutants. Transformation of 3Y1 by v-src virtually activated HA secretion, whereas G2A v-src, a nonmyristoylated form of v-src defective in cell transformation, had no effect. In cells expressing the temperature-sensitive mutant of v-Src, HA secretion was temperature dependent. In addition, HA as small as 1 nM, on the other side, activated cell motility in a tumor-specific manner. HA treatment strongly activated the motility of v-Src–transformed 3Y1, whereas it showed no effect on 3Y1- and 3Y1-expressing G2A v-src. HA-dependent cell locomotion was strongly blocked by either expression of dominant-negative Ras or treatment with a Ras farnesyltransferase inhibitor. Similarly, both the MEK1 inhibitor and the kinase inhibitor clearly inhibited HA-dependent cell locomotion. In contrast, cells transformed with an active MEK1 did not respond to the HA. Finally, an anti-CD44–neutralizing antibody could block the activation of cell motility by HA as well as the HA-dependent phosphorylation of mitogen-activated protein kinase and Akt. Taken together, these results suggest that simultaneous activation of the Ras-mitogen-activated protein kinase pathway and the phosphoinositide 3-kinase pathway by the HA-CD44 interaction is required for the activation of HA-dependent cell locomotion in v-Src–transformed cells.