279 resultados para DNA binding modes


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) mediates angiogenic activity in a variety of estrogen target tissues. To determine whether estrogen has a direct transcriptional effect on VEGF gene expression, we developed a model system by transiently transfecting human VEGF promoter-luciferase reporter constructs into primary human endometrial cells and into Ishikawa cells, derived from a well-differentiated human endometrial adenocarcinoma. In primary endometrial epithelial cells, treatment with 17β-estradiol (E2) resulted in a 3.8-fold increase in luciferase activity, whereas a 3.2-fold induction was demonstrated for stromal cells. Our Ishikawa cells had less than 100 functional estrogen receptors (ER)/cell and were therefore cotransfected with expression vectors encoding either the α- or the β-form of the human ER. In cells cotransfected with ERα, E2 induced 3.2-fold induction in VEGF-promoter luciferase activity. A 2.3-fold increase was observed in cells cotransfected with ERβ. Through specific deletions, the E2 response was restricted to a single 385-bp PvuII-SstI fragment in the 5′ flanking DNA. Cotransfection of this upstream region with a DNA binding domain ER mutant, or site-directed mutagenesis of a variant ERE within this fragment, resulted in the loss of the E2 response. Electromobility shift assays demonstrated that this same ERE sequence specifically binds estradiol-ER complexes. These studies demonstrate that E2-regulated VEGF gene transcription requires a variant ERE located 1.5 kb upstream from the transcriptional start site. Site-directed mutagenesis of this ERE abrogated E2-induced VEGF gene expression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Earlier reports have shown that cdc2 kinase is activated in cells infected with herpes simplex virus 1 and that the activation is mediated principally by two viral proteins, the infected cell protein 22 (ICP22) and the protein kinase encoded by UL13. The same proteins are required for optimal expression of a subset of late (γ2) genes exemplified by US11. In this study, we used a dominant-negative cdc2 protein to determine the role of cdc2 in viral gene expression. We report the following. (i) The cdc2 dominant-negative protein had no effect in the synthesis and accumulation of at least two α-regulatory proteins (ICP4 and ICP0), two β-proteins (ribonucleotide reductase major subunit and single-stranded DNA-binding protein), and two γ1-proteins (glycoprotein D and viral protease). US11, a γ2-protein, accumulated only in cells in which cdc2 dominant-negative protein could not be detected or was made in very small amounts. (ii) The sequence of amino acids predicted to be phosphorylated by cdc2 is present in at least 27 viral proteins inclusive of the regulatory proteins ICP4, ICP0, and ICP22. In in vitro assays, we demonstrated that cdc2 specifically phosphorylated a polypeptide consisting of the second exon of ICP0 but not a polypeptide containing the sequence of the third exon as would be predicted from the sequence analysis. We conclude that cdc2 is required for optimal expression of a subset of γ2-proteins whose expression is also regulated by the viral proteins (ICP22 and UL13) that mediate the activation of cdc2 kinase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The E-26 transforming specific (ETS)-related gene, TEL, also known as ETV6, encodes a strong transcription repressor that is rearranged in several recurring chromosomal rearrangements associated with leukemia and congenital fibrosarcoma. TEL is a nuclear phosphoprotein that is widely expressed in all normal tissues. TEL contains a DNA-binding domain at the C terminus and a helix–loop–helix domain (also called a pointed domain) at the N terminus. The pointed domain is necessary for homotypic dimerization and for interaction with the ubiquitin-conjugating enzyme UBC9. Here we show that the interaction with UBC9 leads to modification of TEL by conjugating it to SUMO-1. The SUMO-1-modified TEL localizes to cell-cycle-specific nuclear speckles that we named TEL bodies. We also show that the leukemia-associated fusion protein TEL/AML1 is modified by SUMO-1 and found in the TEL bodies, in a pattern quite different from what we observe and report for AML1. Therefore, SUMO-1 modification of TEL could be a critical signal necessary for normal functioning of the protein. In addition, the modification by SUMO-1 of TEL/AML1 could lead to abnormal localization of the fusion protein, which could have consequences that include contribution to neoplastic transformation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The A mating type genes of the mushroom Coprinus cinereus encode two families of dissimilar homeodomain proteins (HD1 and HD2). The proteins heterodimerize when mating cells fuse to generate a transcriptional regulator that promotes expression of genes required for early steps in sexual development. In previous work we showed that heterodimerization brings together different functional domains of the HD1 and HD2 proteins; a potential activation domain at the C terminus of the HD1 protein and an essential HD2 DNA-binding motif. Two predicted nuclear localization signals (NLS) are present in the HD1 protein but none are in the HD2 protein. We deleted each NLS separately from an HD1 protein and showed that one (NLS1) is essential for normal heterodimer function. Fusion of the NLS sequences to the C terminus of an HD2 protein compensated for their deletion from the HD1 protein partner and permitted the two modified proteins to form a functional transcriptional regulator. The nuclear targeting properties of the A protein NLS sequences were demonstrated by fusing the region that encodes them to the bacterial uidA (β-glucuronidase) gene and showing that β-glucuronidase expression localized to the nuclei of onion epidermal cells. These observations lead to the proposal that heterodimerization regulates entry of the active transcription factor complex to the nucleus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metallothioneins (MT) are involved in the scavenging of the toxic heavy metals and protection of cells from reactive oxygen intermediates. To investigate the potential role of the protein Ku in the expression of MT, we measured the level of MT-I mRNA in the parental rat fibroblast cell line (Rat 1) and the cell lines that stably and constitutively overexpress the small subunit, the large subunit, and the heterodimer of Ku. Treatment with CdS04 or ZnS04 elevated the MT-I mRNA level 20- to 30-fold in the parental cells and the cells (Ku-70) that overproduce the small subunit or those (Ku-7080) overexpressing the heterodimer. By contrast, the cells (Ku-80) overexpressing the large subunit of Ku failed to induce MT-I. In vitro transcription assay showed that the MT-I promoter activity was suppressed selectively in the nuclear extracts from Ku-80 cells. The specificity of the repressor function was shown by the induction of hsp 70, another Cd-inducible gene, in Ku-80 cells. Addition of the nuclear extract from Ku-80 cells at the start of the transcription reaction abolished the MT-l promoter activity in the Rat 1 cell extract. The transcript once formed in Rat 1 nuclear extract was not degraded by further incubation with the extract from Ku-80 cells. The repressor was sensitive to heat. The DNA-binding activities of at least four transcription factors that control the MT-I promoter activity were not affected in Ku-80 cells. These observations have set the stage for further exploration of the mechanisms by which the Ku subunit mediates suppression of MT induction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

STAT (signal transducer and activator of transcription) proteins are latent cytoplasmic transcription factors that become activated by tyrosine phosphorylation in response to cytokine stimulation. Tyrosine phosphorylated STATs dimerize and translocate into the nucleus to activate specific genes. Different members of the STAT protein family have distinct functions in cytokine signaling. Biochemical and genetic analysis has demonstrated that Stat1 is essential for gene activation in response to interferon stimulation. Although progress has been made toward understanding STAT activation, little is known about how STAT signals are down-regulated. We report here the isolation of a family of PIAS (protein inhibitor of activated STAT) proteins. PIAS1, but not other PIAS proteins, blocked the DNA binding activity of Stat1 and inhibited Stat1-mediated gene activation in response to interferon. Coimmunoprecipitation analysis showed that PIAS1 was associated with Stat1 but not Stat2 or Stat3 after ligand stimulation. The in vivo PIAS1–Stat1 interaction requires phosphorylation of Stat1 on Tyr-701. These results identify PIAS1 as a specific inhibitor of Stat1-mediated gene activation and suggest that there may exist a specific PIAS inhibitor in every STAT signaling pathway.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Irregular facets (If) is a dominant mutation of Drosophila that results in small eyes with fused ommatidia. Previous results showed that the gene Krüppel (Kr), which is best known for its early segmentation function, is expressed ectopically in If mutant eye discs. However, it was not known whether ectopic Kr activity is either the cause or the result of the If mutation. Here, we show that If is a gain-of-function allele of Kr. We then used the If mutation in a genetic screen to identify dominant enhancers and suppressors of Kr activity on the third chromosome. Of 30 identified Kr-interacting loci, two were cloned, and we examined whether they also represent components of a natural Kr-dependent developmental pathway of the embryo. We show that the two genes, eyelid (eld) and extramacrochaetae (emc), which encode a Bright family-type DNA binding protein and a helix-loop-helix factor, respectively, are necessary to achieve the singling-out of a unique Kr-expressing cell during the development of the Malpighian tubules, the excretory organs of the fly. The results indicate that the Kr gain-of-function mutation If provides a tool to identify genes that are active during eye development and that a number of them function also in the control of Kr-dependent developmental processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In vivo, retroviral integration is mediated by a large nucleoprotein complex, termed the preintegration complex (PIC). PICs isolated from infected cells display in vitro integration activity. Here, we analyze the roles of different host cell factors in the structure and function of HIV type 1 (HIV-1) PICs. PICs purified by size exclusion after treatment with high salt lost their integration activity, and adding back an extract from uninfected cells restored this activity. In parallel, the native protein–DNA intasome structure detected at the ends of HIV-1 by Mu-mediated PCR footprinting was abolished by high salt and restored by the crude cell extract. Various purified proteins previously implicated in retroviral PIC function then were analyzed for their effects on the structure and function of salt-treated HIV-1 PICs. Whereas relatively low amounts (5–20 nM) of human barrier-to-autointegration factor (BAF) protein restored integration activity, substantially more (5–10 μM) human host factor HMG I(Y) was required. Similarly high levels (3–8 μM) of bovine RNase A, a DNA-binding protein used as a nonspecific control, also restored activity. Mu-mediated PCR footprinting revealed that of these three purified proteins, only BAF restored the native structure of the HIV-1 protein–DNA intasome. We suggest that BAF is a natural host cofactor for HIV-1 integration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nuclear LIM domains interact with a family of coregulators referred to as Clim/Ldb/Nli. Although one family member, Clim-2/Ldb-1/Nli, is highly expressed in epidermal keratinocytes, no nuclear LIM domain factor is known to be expressed in epidermis. Therefore, we used the conserved LIM-interaction domain of Clim coregulators to screen for LIM domain factors in adult and embryonic mouse skin expression libraries and isolated a factor that is highly homologous to the previously described LIM-only proteins LMO-1, -2, and -3. This factor, referred to as LMO-4, is expressed in overlapping manner with Clim-2 in epidermis and in several other regions, including epithelial cells of the gastrointestinal, respiratory and genitourinary tracts, developing cartilage, pituitary gland, and discrete regions of the central and peripheral nervous system. Like LMO-2, LMO-4 interacts strongly with Clim factors via its LIM domain. Because LMO/Clim complexes are thought to regulate gene expression by associating with DNA-binding proteins, we used LMO-4 as a bait to screen for such DNA-binding proteins in epidermis and isolated the mouse homologue of Drosophila Deformed epidermal autoregulatory factor 1 (DEAF-1), a DNA-binding protein that interacts with regulatory sequences first described in the Deformed epidermal autoregulatory element. The interaction between LMO-4 and mouse DEAF-1 maps to a proline-rich C-terminal domain of mouse DEAF-1, distinct from the helix–loop–helix and GATA domains previously shown to interact with LMOs, thus defining an additional LIM-interacting domain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently, several proteins have been identified that are related in their sequence to the p53 tumor-suppressor protein. One of these proteins, which is termed p73, exhibits sequence homology to the p53 transcriptional activation, DNA binding, and oligomerization domains. The adenovirus E1B 55-kDa protein, the adenovirus E4orf6 protein, and SV40 T antigen each can bind to p53 and inhibit p53 function. Here we demonstrate that the adenovirus E4orf6 protein, but not the E1B 55-kDa protein or T antigen, interacts with p73. The E4orf6 protein inhibits p73-mediated transcriptional activation and cell killing in a manner similar to its effect on p53. Thus, only a subset of viral oncoproteins that antagonize p53 function also interacts with the related p73 protein.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In eukaryotes, sequence-specific DNA-binding proteins activate gene expression by recruiting the transcriptional apparatus and chromatin remodeling proteins to the promoter through protein-protein contacts. In many instances, the connection between DNA-binding proteins and the transcriptional apparatus is established through the intermediacy of adapter proteins known as coactivators. Here we describe synthetic molecules with low molecular weight that act as transcriptional coactivators. We demonstrate that a completely nonnatural activation domain in one such molecule is capable of stimulating transcription in vitro and in vivo. The present strategy provides a means of gaining external control over gene activation through intervention using small molecules.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glucocorticoids exert multiple anti-inflammatory activities, one of which is the inhibition of transcription dependent on the nuclear factor (NF)-κB. It has been suggested that the effect of dexamethasone (DEX), a glucocorticoid analog, is attributed to an increased production of the inhibitory IκB molecule, which in turn would bind and remove activated, DNA-bound NF-κB complexes in the cell nucleus. Upon investigating DEX-mediated repression of interleukin-6 expression induced by tumor necrosis factor, DEX treatment was found to act directly on NF-κB-dependent transcription, without changing the expression level of IκB. Neither the mRNA of IκB nor the protein was significantly elevated by a combined treatment with tumor necrosis factor and DEX of murine endothelial or fibroblast cells. The DNA-binding activity of induced NF-κB also remained unchanged after stimulation of cells with DEX. Evidence for a direct nuclear mechanism of action was obtained by analysis of cell lines stably expressing a fusion protein between the DNA-binding domain of the yeast Gal4 protein and the transactivating p65 subunit of NF-κB. Expression of a Gal4-dependent luciferase reporter gene activated by this nuclear fusion protein was also strongly repressed after addition of DEX. Because the DNA-binding activity of the Gal4 fusion protein was not affected by DEX, it can be concluded that the reduction of gene activation was caused by interference of the activated glucocorticoid receptor with the transactivation potential of the NF-κB p65 subunit.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Homologous recombination hotspots increase the frequency of recombination in nearby DNA. The M26 hotspot in the ade6 gene of Schizosaccharomyces pombe is a meiotic hotspot with a discrete, cis-acting nucleotide sequence (5′-ATGACGT-3′) defined by extensive mutagenesis. A heterodimeric M26 DNA binding protein, composed of subunits Mts1 and Mts2, has been identified and purified 40,000-fold. Cloning, disruption, and genetic analyses of the mts genes demonstrate that the Mts1/Mts2 heterodimer is essential for hotspot activity. This provides direct evidence that a specific trans-acting factor, binding to a cis-acting site with a unique nucleotide sequence, is required to activate this meiotic hotspot. Intriguingly, the Mts1/Mts2 protein subunits are identical to the recently described transcription factors Atf1 (Gad7) and Pcr1, which are required for a variety of stress responses. However, we report differential dependence on the Mts proteins for hotspot activation and stress response, suggesting that these proteins are multifunctional and have distinct activities. Furthermore, ade6 mRNA levels are equivalent in hotspot and nonhotspot meioses and do not change in mts mutants, indicating that hotspot activation is not a consequence of elevated transcription levels. These findings suggest an intimate but separable link between the regulation of transcription and meiotic recombination. Other studies have recently shown that the Mts1/Mts2 protein and M26 sites are involved in meiotic recombination elsewhere in the S. pombe genome, suggesting that these factors help regulate the timing and distribution of homologous recombination.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human T cell leukemia/lymphotropic virus type I (HTLV-I) induces adult T cell leukemia/lymphoma (ATLL). The mechanism of HTLV-I oncogenesis in T cells remains partly elusive. In vitro, HTLV-I induces ligand-independent transformation of human CD4+ T cells, an event that correlates with acquisition of constitutive phosphorylation of Janus kinases (JAK) and signal transducers and activators of transcription (STAT) proteins. However, it is unclear whether the in vitro model of HTLV-I transformation has relevance to viral leukemogenesis in vivo. Here we tested the status of JAK/STAT phosphorylation and DNA-binding activity of STAT proteins in cell extracts of uncultured leukemic cells from 12 patients with ATLL by either DNA-binding assays, using DNA oligonucleotides specific for STAT-1 and STAT-3, STAT-5 and STAT-6 or, more directly, by immunoprecipitation and immunoblotting with anti-phosphotyrosine antibody for JAK and STAT proteins. Leukemic cells from 8 of 12 patients studied displayed constitutive DNA-binding activity of one or more STAT proteins, and the constitutive activation of the JAK/STAT pathway was found to persist over time in the 2 patients followed longitudinally. Furthermore, an association between JAK3 and STAT-1, STAT-3, and STAT-5 activation and cell-cycle progression was demonstrated by both propidium iodide staining and bromodeoxyuridine incorporation in cells of four patients tested. These results imply that JAK/STAT activation is associated with replication of leukemic cells and that therapeutic approaches aimed at JAK/STAT inhibition may be considered to halt neoplastic growth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have developed a strategy for the identification of peptides able to functionally replace a zinc finger domain in a transcription factor. This strategy could have important ramifications for basic research on gene regulation and for the development of therapeutic agents. In this study in yeast, we expressed chimeric proteins that included a random peptide combinatorial library in association with two zinc finger domains and a transactivating domain. The library was screened for chimeric proteins capable of activating transcription from a target sequence in the upstream regulatory regions of selectable or reporter genes. In a screen of approximately 1.5 × 107 transformants we identified 30 chimeric proteins that exhibited transcriptional activation, some of which were able to discriminate between wild-type and mutant DNA targets. Chimeric library proteins expressed as glutathione S-transferase fusions bound to double-stranded oligonucleotides containing the target sequence, suggesting that the chimeras bind directly to DNA. Surprisingly, none of the peptides identified resembled a zinc finger or other well-known transcription factor DNA binding domain.