261 resultados para Signal-regulated Kinase


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activation of macrophages by bacterial lipopolysaccharide (LPS) induces transcription of genes that encode for proinflammatory regulators of the immune response. Previous work has suggested that activation of the transcription factor activator protein 1 (AP-1) is one LPS-induced event that mediates this response. Consistent with this notion, we found that LPS stimulated AP-1-mediated transcription of a transfected reporter gene in the murine macrophage cell line RAW 264.7. As AP-1 activity is regulated in part by activation of the c-Jun N-terminal kinase (JNK), which phosphorylates and subsequently increases the transcriptional activity of c-Jun, we examined whether LPS treatment of macrophages resulted in activation of this kinase. LPS treatment of RAW 264.7 cells, murine bone marrow-derived macrophages, and the human monocyte cell line THP-1 resulted in rapid activation of the p46 and p54 isoforms of JNK. Treatment with wild-type and rough mutant forms of LPS and synthetic lipid A resulted in JNK activation, while pretreatment with the tyrosine kinase inhibitor herbimycin A inhibited this response. Binding of LPS-LPS binding protein (LBP) complexes to CD14, a surface receptor that mediates many LPS responses, was found to be crucial, as pretreatment of THP-1 cells with the monoclonal antibody 60b, which blocks this binding, inhibited JNK activation. These results suggest that LPS activation of JNK in monocyte/macrophage cells is a CD14- and protein tyrosine phosphorylation-dependent event that may mediate the early activation of AP-1 in regulating LPS-triggered gene induction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

mSOS, a guanine nucleotide exchange factor, is a positive regulator of Ras. Fyn tyrosine protein kinase is a potential mediator in T-cell antigen receptor signal transduction in subsets of T cells. We investigated the functional and physical interaction between mSOS and Fyn in T-cell hybridoma cells. Stimulation of the T-cell antigen receptor induced the activation of guanine nucleotide exchange activity in mSOS immunoprecipitates. Overexpression of Fyn mutants with an activated kinase mutation and with a Src homology 2 deletion mutation resulted in a stimulation and suppression of the mSOS activity, respectively. The complex formations of Fyn-Shc, Shc-Grb2, and Grb2-mSOS were detected in the activated Fyn-transformed cells, whereas the SH2 deletion mutant of Fyn failed to form a complex with mSOS. Moreover, tyrosine phosphorylation of Shc was induced by the overexpression of the activated Fyn. These findings support the idea that Fyn activates the activity of mSOS bound to Grb2 through tyrosine phosphorylation of Shc. Unlike the current prevailing model, Fyn-induced activation of Ras might involve the stimulation of the catalytic guanine nucleotide exchange activity of mSOS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To understand the mechanisms by which electrical activity may generate long-term responses in the nervous system, we examined how activation of voltage-sensitive calcium channels (VSCCs) can stimulate the Ras/mitogen-activated protein kinase (MAPK) signaling pathway. Calcium influx through L-type VSCCs leads to tyrosine phosphorylation of the adaptor protein Shc and its association with the adaptor protein Grb2, which is bound to the guanine nucleotide exchange factor Sos1. In response to calcium influx, Shc, Grb2, and Sos1 inducibly associate with a 180-kDa tyrosine-phosphorylated protein, which was determined to be the epidermal growth factor receptor (EGFR). Calcium influx induces tyrosine phosphorylation of the EGFR to levels that can activate the MAPK signaling pathway. Thus, ion channel activation stimulates growth factor receptor signal transduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe here the cloning and characterization of a cDNA encoding a protein kinase that has high sequence homology to members of the mitogen-activated protein kinase (MAPK) kinase kinase (MAPKKK or MEKK) family; this cDNA is named cATMEKKI (Arabidopsis thaliana MAP kinase or ERK kinase kinase 1). The catalytic domain of the putative ATMEKK1 protein shows approximately 40% identity with the amino acid sequences of the catalytic domains of MAPKKKs (such as Byr2 from Schizosaccharomyces pombe, Ste11 from Saccharomyces cerevisiae, Bck1 from S. cerevisiae, MEKK from mouse, and NPK1 from tobacco). In yeast cells that overexpress ATMEKK1, the protein kinase replaces Ste11 in responding to mating pheromone. In this study, the expression of three protein kinases was examined by Northern blot analyses: ATMEKK1 (structurally related to MAPKKK), ATMPK3 (structurally related to MAPK), and ATPK19 (structurally related to ribosomal S6 kinase). The mRNA levels of these three protein kinases increased markedly and simultaneously in response to touch, cold, and salinity stress. These results suggest that MAP kinase cascades, which are thought to respond to a variety of extracellular signals, are regulated not only at the posttranslational level but also at the transcriptional level in plants and that MAP kinase cascades in plants may function in transducing signals in the presence of environmental stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The specific signal transduction function of the gamma c subunit in the interleukin (IL) 2, IL-4, IL-7, IL-9, and IL-15 receptor complexes remains undefined. The present structure-function analyses demonstrated that the entire cytoplasmic tail of gamma c could be functionally replaced in the IL-2 receptor (IL-2R) signaling complex by a severely truncated erythropoietin receptor cytoplasmic domain lacking tyrosine residues. Heterodimerization of IL-2R beta with either gamma c or the truncated erythropoietin receptor chain led to an array of specific signals normally derived from the native IL-2R despite the substitution of Janus kinase JAK2 for JAK3 in the receptor complex. These findings thus suggest a model in which the gamma c subunit serves as a common and generic "trigger" chain by providing a nonspecific Janus kinase for signaling program initiation, while signal specificity is determined by the unique "driver" subunit in each of the gamma c- containing receptor complexes. Furthermore, these results may have important functional implications for the asymmetric design of many cytokine receptor complexes and the evolutionary design of receptor subfamilies that share common trigger or driver subunits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adult skeletal muscle Na+ channel mu1 possesses a highly conserved segment between subunit domains III and IV containing a consensus protein kinase C (PKC) phosphorylation site that, in the neuronal isoform, acts as a master control for "convergent" regulation by PKC and cAMP-dependent protein kinase. It lacks an approximately 200-aa segment between domains I and II though to modulate channel gating. We here demonstrate that mu1 is regulated by PKC (but not cAMP-dependent protein kinase) in a manner distinct from that observed for the neuronal isoforms, suggesting that under the same conditions muscle excitation could be uncoupled from motor neuron input. Maximal phosphorylation by PKC, in the presence of phosphatase inhibitors, reduced peak Na+ currents by approximately 90% by decreasing the maximal conductance, caused a -15 mV shift in the midpoint of steady-state inactivation, and caused a slight speeding of inactivation. Surprisingly, these effects were not affected by mutation of the conserved serine (serine-1321) in the interdomain III-IV loop. the pattern of current suppression and gating modification by PKC resembles the response of muscle Na+ channels to inhibitory factors present in the serum and cerebrospinal fluid of patients with Guillain-Barré syndrome, multiple sclerosis, and idiopathic demyelinating polyradiculoneuritis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

d-alpha-Tocopherol, but not d-beta-tocopherol, negatively regulates proliferation of vascular smooth muscle cells at physiological concentrations. d-alpha-Tocopherol inhibits protein kinase C (PKC) activity, whereas d-beta-tocopherol is ineffective. Furthermore d-beta-tocopherol prevents the inhibition of cell growth and of PKC activity caused by d-alpha-tocopherol. The negative regulation by d-alpha-tocopherol of PKC activity appears to be the cause and not the effect of smooth muscle cell growth inhibition. d-alpha-Tocopherol does not act by binding to PKC directly but presumably by preventing PKC activation. It is concluded that, in vascular smooth muscle cells, d-alpha-tocopherol acts specifically through a nonantioxidant mechanism and exerts a negative control on a signal transduction pathway regulating cell proliferation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ion channels underlying the electrical activity of neurons can be regulated by neurotransmitters via two basic mechanisms: ligand binding and covalent modification. Whereas neurotransmitters often act by binding directly to ion channels, the intracellular messenger cyclic AMP is thought usually to act indirectly, by activating protein kinase A, which in turn can phosphorylate channel proteins. Here we show that cyclic AMP, and transmitters acting via cyclic AMP, can act in a protein kinase A-independent manner in the brain. In hippocampal pyramidal cells, cyclic AMP and norepinephrine were found to cause a depolarization by enhancing the hyperpolarization-activated mixed cation current, IQ (also called Ih). This effect persisted even after protein kinase A activity was blocked, thus strongly suggesting a kinase-independent action of cyclic AMP. The modulation of this current by ascending monoaminergic fibers from the brainstem is likely to be a widespread mechanism, participating in the state control of the brain during arousal and attention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inhibitor protein I kappa B alpha controls the nuclear import of the transcription factor NF-kappa B. The inhibitory activity of I kappa B alpha is regulated from the cytoplasmic compartment by signal-induced proteolysis. Previous studies have shown that signal-dependent phosphorylation of serine residues 32 and 36 targets I kappa B alpha to the ubiquitin-proteasome pathway. Here we provide evidence that lysine residues 21 and 22 serve as the primary sites for signal-induced ubiquitination of I kappa B alpha. Conservative Lys-->Arg substitutions at both Lys-21 and Lys-22 produce dominant-negative mutants of I kappa B alpha in vivo. These constitutive inhibitors are appropriately phosphorylated but fail to release NF-kappa B in response to multiple inducers, including viral proteins, cytokines, and agents that mimic antigenic stimulation through the T-cell receptor. Moreover, these Lys-->Arg mutations prevent signal-dependent degradation of I kappa B alpha in vivo and ubiquitin conjugation in vitro. We conclude that site-specific ubiquitination of phosphorylated I kappa B alpha at Lys-21 and/or Lys-22 is an obligatory step in the activation of NF-kappa B.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The focal adhesion kinase (FAK) has been implicated in integrin-mediated signaling events and in the mechanism of cell transformation by the v-Src and v-Crk oncoproteins. To gain further insight into FAK signaling pathways, we used a two-hybrid screen to identify proteins that interact with mouse FAK. The screen identified two proteins that interact with FAK via their Src homology 3 (SH3) domains: a v-Crk-associated tyrosine kinase substrate (Cas), p130Cas, and a still uncharacterized protein, FIPSH3-2, which contains an SH3 domain closely related to that of p130Cas. These SH3 domains bind to the same proline-rich region of FAK (APPKPSR) encompassing residues 711-717. The mouse p130Cas amino acid sequence was deduced from cDNA clones, revealing an overall high degree of similarity to the recently reported rat sequence. Coimmunoprecipitation experiments confirmed that p130Cas and FAK are associated in mouse fibroblasts. The stable interaction between p130Cas and FAK emerges as a likely key element in integrin-mediated signal transduction and further represents a direct molecular link between the v-Src and v-Crk oncoproteins. The Src family kinase Fyn, whose Src homology 2 (SH2) domain binds to the major FAK autophosphorylation site (tyrosine 397), was also identified in the two-hybrid screen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proteins of the 14-3-3 family can associate with, and/or modulate the activity of, several protooncogene and oncogene products and, thus, are implicated in regulation of signaling pathways. We report that 14-3-3 is associated with another important transducing enzyme, phosphatidylinositol 3-kinase (PI3-K). A recombinant 14-3-3 fusion protein bound several tyrosine-phosphorylated proteins from antigen receptor-stimulated T lymphocytes. PI3-K was identified by immunoblotting and enzymatic assays as one of the 14-3-3-binding proteins in resting or activated cells. Moreover, endogenous 14-3-3 and PI3-K were coimmunoprecipitated from intact T cells. Far-Western blots of gel-purified, immunoprecipitated PI3-K with a recombinant 14-3-3 fusion protein revealed direct binding of 14-3-3 to the catalytic subunit (p110) of PI3-K. Finally, anti-phosphotyrosine immunoprecipitates from activated, 14-3-3-overexpressing cells contained lower PI3-K enzymatic activity than similar immunoprecipitates from control cells. These findings suggest that association of 14-3-3 with PI3-K in hematopoietic (and possibly other) cells regulates the enzymatic activity of PI3-K during receptor-initiated signal transduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this report we structurally and functionally define a binding domain that is involved in protein association and that we have designated EH (for Eps15 homology domain). This domain was identified in the tyrosine kinase substrate Eps15 on the basis of regional conservation with several heterogeneous proteins of yeast and nematode. The EH domain spans about 70 amino acids and shows approximately 60% overall amino acid conservation. We demonstrated the ability of the EH domain to specifically bind cytosolic proteins in normal and malignant cells of mesenchymal, epithelial, and hematopoietic origin. These observations prompted our search for additional EH-containing proteins in mammalian cells. Using an EH domain-specific probe derived from the eps15 cDNA, we cloned and characterized a cDNA encoding an EH-containing protein with overall similarity to Eps15; we designated this protein Eps15r (for Eps15-related). Structural comparison of Eps15 and Eps15r defines a family of signal transducers possessing extensive networking abilities including EH-mediated binding and association with Src homology 3-containing proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Src-like tyrosine kinases require membrane localization for transformation and probably for their normal role in signal transduction. We utilized this characteristic to prepare Src-like tyrosine kinases that can be readily activated with the rationally designed chemical inducer of dimerization FK1012. Dimerization of cytoplasmic Src-like tyrosine kinases was not sufficient for signaling, but their recruitment to the plasma membrane led to the rapid activation of transcription factors identical to those regulated by crosslinking the antigen receptor. Moreover, recruitment of activated Src-like kinases to the membrane replaced signaling by the T-lymphocyte antigen receptor complex, leading to the activation of both the Ras/protein kinase C and Ca2+/calcineurin pathways normally activated by antigen receptor signaling. Since these chemical inducers of dimerization are cell permeable, this approach permits the production of conditional alleles of any of the Src-like tyrosine kinases, thereby allowing a delineation of their developmental roles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While Ras activation has been shown to play an important role in signal transduction by the T-lymphocyte antigen receptor, the mechanism of its activation in T cells is unclear. Membrane localization of the guanine nucleotide exchange factor Sos, but not Vav or Dbl, was sufficient for Ras-mediated signaling in T lymphocytes. Activation of Sos appears to involve membrane recruitment and not allosteric changes, because interaction of Sos with the linking molecule Grb-2 was not required for Ras activation. To extend this analysis, we constructed a modified Sos that could be localized to the membrane inducibly by using a rationally designed chemical inducer of dimerization, FK1012. The role of Grb-2 in signaling was mimicked with this technique, which induced the association of a modified Sos with the membrane, resulting in rapid activation of Ras-induced signaling. In contrast, inducible localization of Grb-2 to the membrane did not activate signaling and suggests that the interaction of Grb-2 with Sos in T cells is subject to regulation. This conditional allele of Sos demonstrates that membrane localization of Sos is sufficient for Ras activation in T cells and indicates that the role of Grb-2 is to realize the biologic advantages of linker-mediated dimerization: enhanced specificity and favorable kinetics for signaling. This method of generating conditional alleles may also be useful in dissecting other signal transduction pathways regulated by protein localization or protein-protein interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The delta isoform of protein kinase C is phosphorylated on tyrosine in response to antigen activation of the high-affinity receptor for immunoglobulin E. While protein kinase C-delta associates with and phosphorylates this receptor, immunoprecipitation of the receptor revealed that little, if any, tyrosine-phosphorylated protein kinase C-delta is receptor associated. In vitro kinase assays with immunoprecipitated tyrosine-phosphorylated protein kinase C-delta showed that the modified enzyme had diminished activity toward the receptor gamma-chain peptide as a substrate but not toward histones or myelin basic protein peptide. We propose a model in which the tyrosine phosphorylation of protein kinase C-delta regulates the kinase specificity toward a given substrate. This may represent a general mechanism by which in vivo protein kinase activities are regulated in response to external stimuli.