245 resultados para RNA-POLYMERASE-II


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The β and proliferating cell nuclear antigen (PCNA) sliding clamps were first identified as components of their respective replicases, and thus were assigned a role in chromosome replication. Further studies have shown that the eukaryotic clamp, PCNA, interacts with several other proteins that are involved in excision repair, mismatch repair, cellular regulation, and DNA processing, indicating a much wider role than replication alone. Indeed, the Escherichia coli β clamp is known to function with DNA polymerases II and V, indicating that β also interacts with more than just the chromosomal replicase, DNA polymerase III. This report demonstrates three previously undetected protein–protein interactions with the β clamp. Thus, β interacts with MutS, DNA ligase, and DNA polymerase I. Given the diverse use of these proteins in repair and other DNA transactions, this expanded list of β interactive proteins suggests that the prokaryotic β ring participates in a wide variety of reactions beyond its role in chromosomal replication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumor necrosis factor alpha (TNF-alpha) is well-characterized for its necrotic action against tumor cells; however, it has been increasingly associated with an apoptosis-inducing potential on target cells. While the signaling events and the actual cytolytic mechanism(s) for both TNF-alpha-induced necrosis and apoptosis remain to be fully elucidated, we report here on (i) the ability of TNF-alpha to induce apoptosis in the promonocytic U937 cells, (ii) the discovery of a cross-talk between the TNF-alpha and the interferon signaling pathways, and (iii) the pivotal role of interferon-inducible, double-stranded RNA-activated protein kinase (PKR) in the induction of apoptosis by TNF-alpha. Our data from microscopy studies, trypan blue exclusion staining, and apoptotic DNA ladder electrophoresis revealed that a subclone derived from U937 and carrying a PKR antisense expression vector was resistant to TNF-alpha-induced apoptosis. Further, TNF-alpha initiated a generalized RNA degradation process in which the participation of PKR was required. Finally, the PKR gene is a candidate "death gene" since overexpression of this gene could bring about apoptosis in U937 cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two classes of RNA ligands that bound to separate, high affinity nucleic acid binding sites on Q beta replicase were previously identified. RNA ligands to the two sites, referred to as site I and site II, were used to investigate the molecular mechanism of RNA replication employed by the four-subunit replicase. Replication inhibition by site I- and site II-specific ligands defined two subsets of replicatable RNAs. When provided with appropriate 3' ends, ligands to either site served as replication templates. UV crosslinking experiments revealed that site I is associated with the S1 subunit, site II with elongation factor Tu, and polymerization with the viral subunit of the holoenzyme. These results provide the framework for a three site model describing template recognition and product strand initiation by Q beta replicase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Initiation of minus (-) strand DNA synthesis was examined on templates containing R, U5, and primer-binding site regions of the human immunodeficiency virus type 1 (HIV-1), feline immunodeficiency virus (FIV), and equine infectious anemia virus (EIAV) genomic RNA. DNA synthesis was initiated from (i) an oligoribonucleotide complementary to the primer-binding sites, (ii) synthetic tRNA(3Lys), and (iii) natural tRNA(3Lys), by the reverse transcriptases of HIV-1, FIV, EIAV, simian immunodeficiency virus, HIV type 2 (HIV-2), Moloney murine leukemia virus, and avian myeloblastosis virus. All enzymes used an oligonucleotide on wild-type HIV-1 RNA, whereas only a limited number initiated (-) strand DNA synthesis from either tRNA(3Lys). In contrast, all enzymes supported efficient tRNA(3Lys)-primed (-) strand DNA synthesis on the genomes of FIV and EIAV. This may be in part attributable to the observation that the U5-inverted repeat stem-loop of the EIAV and FIV genomes lacks an A-rich loop shown with HIV-1 to interact with the U-rich tRNA anticodon loop. Deletion of this loop in HIV-1 RNA, or disrupting a critical loop-loop complex by tRNA(3Lys) extended by 9 nt, restored synthesis of HIV-1 (-) strand DNA from primer tRNA(3Lys) by all enzymes. Thus, divergent evolution of lentiviruses may have resulted in different mechanisms to use the same host tRNA for initiation of reverse transcription.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the mechanism of accurate in vitro RNA editing of Trypanosoma brucei ATPase 6 mRNA, using four mRNA-guide RNA (gRNA) pairs that specify deletion of 2, 3, or 4 U residues at editing site 1 and mitochondrial extract. This extract not only catalyzes deletion of the specified number of U residues but also exhibits a novel endonuclease activity that cleaves the input pre-mRNA in a gRNA-directed manner, precisely at the phosphodiester bond predicted in a simple enzymatic model of RNA editing. This cleavage site is inconsistent with a chimera-based editing mechanism. The U residues to be deleted, present at the 3' end of the upstream cleavage product, are then removed evidently by a 3' U-specific exonuclease and not by a reverse reaction of terminal U transferase. RNA ligase can then join the mRNA halves through their newly formed 5' P and 3' OH termini, generating mRNA faithfully edited at the first editing site. This resultant, partially edited mRNA can then undergo accurate, gRNA-directed cleavage at editing site 2, again precisely as predicted by the enzymatic editing model. All of these enzymatic activities cofractionate with the U-deletion activity and may reside in a single complex. The data imply that each round of editing is a four-step process, involving (i) gRNA-directed cleavage of the pre-mRNA at the bond immediately 5' of the region base paired to the gRNA, (ii) U deletion from or U addition to the 3' OH of the upstream mRNA half, (iii) ligation of the mRNA halves, and (iv) formation of additional base pairing between the correctly edited site and the gRNA that directs subsequent nuclease cleavage at the next editing site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Formation of deletions by recombination between short direct repeats is thought to involve either a break-join or a copy-choice process. The key step of the latter is slippage of the replication machinery between the repeats. We report that the main replicase of Escherichia coli, DNA polymerase III holoenzyme, slips between two direct repeats of 27 bp that flank an inverted repeat of approximately equal 300bp. Slippage was detected in vitro, on a single-stranded DNA template, in a primer extension assay. It requires the presence of a short (8 bp) G+C-rich sequence at the base of a hairpin that can form by annealing of the inverted repeats. It is stimulated by (i) high salt concentration, which might stabilize the hairpin, and (ii) two proteins that ensure the processivity of the DNA polymerase III holoenzyme: the single-stranded DNA binding protein and the beta subunit of the polymerase. Slippage is rather efficient under optimal reaction conditions because it can take place on >50% of template molecules. This observation supports the copy-choice model for recombination between short direct repeats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The developmental changes in hemoglobin gene expression known as "switching" involve both the sequential activation and silencing of the individual globin genes. We postulated that in addition to changes in transcription, posttranscriptional mechanisms may be involved in modulating globin gene expression. We studied globin RNA transcripts in human adult erythroid cells (hAEC to analyze the mechanism of silencing of the embryonic epsilon-globin gene in the adult stage and in K562 erythroleukemic cells to analyze the inactive state of their adult beta-globin genes. In hAEC, which express primarily the beta-globin gene, quantitative PCR analysis shows that beta-mRNA exon levels are high and comparable among the three exons; the RNA transcripts corresponding to exons of the gamma-globin gene are low, with slight differences among the three exons. Although epsilon-globin is not expressed, epsilon-globin RNA transcripts are detected, with exon I levels comparable to that of gamma-globin exon I and much higher than epsilon-exons II and III. As expected, in K562 cells that express high levels of epsilon- and gamma-globin, epsilon- and gamma-mRNA levels are high, with comparable levels of exons I, II, and III. In K562 cells beta-mRNA levels are very low but beta-exon I levels are much higher than that of exons II or III. Moreover, all or most of the globin transcripts for the highly expressed globin genes in both cell types (gamma and beta in hAEC, epsilon and gamma in K562 cells) found in the cytoplasm or nucleus are correctly processed. The globin transcripts that are detected both in the cytoplasm and nucleus of cells without expression of the corresponding protein are largely unspliced (containing one or two intervening sequences). These studies suggest that in addition to changes in transcription rates, changes in completion or processing of globin RNA transcripts may contribute to the developmental regulation of the hemoglobin phenotype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Excitatory amino acid toxicity, resulting from overactivation of N-methyl-D-aspartate (NMDA) glutamate receptors, is a major mechanism of neuronal cell death in acute and chronic neurological diseases. We have investigated whether excitotoxicity may occur in peripheral organs, causing tissue injury, and report that NMDA receptor activation in perfused, ventilated rat lungs triggered acute injury, marked by increased pressures needed to ventilate and perfuse the lung, and by high-permeability edema. The injury was prevented by competitive NMDA receptor antagonists or by channel-blocker MK-801, and was reduced in the presence of Mg2+. As with NMDA toxicity to central neurons, the lung injury was nitric oxide (NO) dependent: it required L-arginine, was associated with increased production of NO, and was attenuated by either of two NO synthase inhibitors. The neuropeptide vasoactive intestinal peptide and inhibitors of poly(ADP-ribose) polymerase also prevented this injury, but without inhibiting NO synthesis, both acting by inhibiting a toxic action of NO that is critical to tissue injury. The findings indicate that: (i) NMDA receptors exist in the lung (and probably elsewhere outside the central nervous system), (ii) excessive activation of these receptors may provoke acute edematous lung injury as seen in the "adult respiratory distress syndrome," and (iii) this injury can be modulated by blockade of one of three critical steps: NMDA receptor binding, inhibition of NO synthesis, or activation of poly(ADP-ribose) polymerase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An essential step in the initiation of a virus infection is the release of the viral genome from the other constituents of the virus particle, a process referred to as uncoating. We have used reverse transcription and polymerase chain reaction amplification procedures to determine the rate and direction of in vivo uncoating of the rod-shaped tobacco mosaic virus. The virus particles contain a single 6.4-kb RNA molecule that lies between successive turns of a helical arrangement of coat protein subunits. When the particles are introduced into plant cells, the subunits are removed via a bidirectional uncoating mechanism. Within 2-3 min, the part of the viral RNA from the 5' end to a position >70% toward the 3' end has been freed of coat protein subunits. This is followed by removal of subunits from the 3' end of the RNA and sequential uncoating of the RNA in a 3'-to-5' direction. An internal region of the viral RNA is the final part to be uncoated. Progeny virus particles are detected in the cells 35-40 min after inoculation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Host protein synthesis is selectively inhibited in vaccinia virus-infected cells. This inhibition has been associated with the production of a group of small, nontranslated, polyadenylylated RNAs (POLADS) produced during the early part of virus infection. The inhibitory function of POLADS is associated with the poly(A) tail of these small RNAs. To determine the origin of the 5'-ends of POLADS, reverse transcription was performed with POLADS isolated from VV-infected cells at 1 hr and 3.5 hr post infection. The cDNAs of these POLADS were cloned into plasmids (pBS or pBluescript II KS +/-), and their nucleotide composition was determined by DNA sequencing. The results of this investigation show the following: There is no specific gene encoding for POLADS. The 5' ends of POLADS may be derived from either viral or cellular RNAs. Any RNA sequence including tRNAs, small nuclear RNAs and 5'ends of mRNAs can become POLADS if they acquire a poly(A) tail at their 3' ends during infection. This nonspecific polyadenylylation found in vaccinia virus-infected cells is probably conducted by vaccinia virus poly(A)+ polymerase. No consensus sequence is found on the 5' ends of POLADS for polyadenylylation. The 5' ends of POLADS have no direct role in their inhibitory activity of protein synthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cu(II) ions have been reacted with a 1/1 mixture of two linear ligands, one containing three 2,2'- bipyridine groups and the other three 2,2':6',2"-terpyridine groups. Absorption spectroscopy and fast atom bombardment mass spectrometry indicate the formation of a trinuclear complex containing one ligand of each kind. Determination of the crystal structure of this compound has confirmed that it is indeed a linear trinuclear complex in which two different ligands are wrapped in a helical fashion around the pentacoordinated metal ions. The central coordination geometry is trigonal bipyramidal; the two lateral Cu(II) ions are in a square pyramidal environment. Thus, a heteroduplex helicate is formed by the self-assembly of two different ligand strands and three specific metal ions induced by the coordination number and geometry of the latter. The self-assembly process may be considered to result from the reading of the steric and binding information present in the two ligands by Cu(II) ions through a pentacoordination algorithm. The same ligands have been shown earlier to yield homoduplex helicates from ions of tetrahedral and octahedral coordination geometry and strands of bidentate bipyridines and tridentate terpyridines, respectively. These two types of artificial double helical species may be related on one hand to the natural homoduplex nucleic acids and on the other hand to the DNA:RNA heteroduplex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While studies of the regulation of gene expression have generally concerned qualitative changes in the selection or the level of expression of a gene, much of the regulation that occurs within a cell involves the continuous subtle optimization of the levels of proteins used in macromolecular complexes. An example is the biosynthesis of the ribosome, in which equimolar amounts of nearly 80 ribosomal proteins must be supplied by the cytoplasm to the nucleolus. We have found that the transcript of one of the ribosomal protein genes of Saccharomyces cerevisiae, RPL32, participates in such fine tuning. Sequences from exon I of the RPL32 transcript interact with nucleotides from the intron to form a structure that binds L32 to regulate splicing. In the spliced transcript, the same sequences interact with nucleotides from exon II to form a structure that binds L32 to regulate translation, thus providing two levels of autoregulation. We now show, by using a sensitive cocultivation assay, that these RNA structures and their interaction with L32 play a role in the fitness of the cell. The change of a single nucleotide within the 5' leader of the RPL32 transcript, which abolishes the site for L32 binding, leads to detectably slower growth and to eventual loss of the mutant strain from the culture. Experiments designed to assess independently the regulation of splicing and the regulation of translation are presented. These observations demonstrate that, in evolutionary terms, subtle regulatory compensations can be critical. The change in structure of an RNA, due to alteration of just one noncoding nucleotide, can spell the difference between biological success and failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A role for rRNA in peptide chain termination was indicated several years ago by isolation of a 168 rRNA (small subunit) mutant of Escherichia coli that suppressed UGA mutations. In this paper, we describe another interesting rRNA mutant, selected as a translational suppressor of the chain-terminating mutant trpA (UGA211) of E. coli. The finding that it suppresses UGA at two positions in trpA and does not suppress the other two termination codons, UAA and UAG, at the same codon positions (or several missense mutations, including UGG, available at one of the two positions) suggests a defect in UGA-specific termination. The suppressor mutation was mapped by plasmid fragment exchanges and in vivo suppression to domain II of the 23S rRNA gene of the rrnB operon. Sequence analysis revealed a single base change of G to A at residue 1093, an almost universally conserved base in a highly conserved region known to have specific interactions with ribosomal proteins, elongation factor G, tRNA in the A-site, and the peptidyltransferase region of 23S rRNA. Several avenues of action of the suppressor mutation are suggested, including altered interactions with release factors, ribosomal protein L11, or 16S rRNA. Regardless of the mechanism, the results indicate that a particular residue in 23S rRNA affects peptide chain termination, specifically in decoding of the UGA termination codon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Golgi alpha-mannosidase II (alpha-MII) is an enzyme involved in the processing of N-linked glycans. Using a previously isolated murine cDNA clone as a probe, we have isolated cDNA clones encompassing the human alpha-MII cDNA open reading frame and initiated isolation of human genomic clones. During the isolation of genomic clones, genes related to that encoding alpha-MII were isolated. One such gene was found to encode an isozyme, designated alpha-MIIx. A 5-kb cDNA clone encoding alpha-MIIx was then isolated from a human melanoma cDNA library. However, comparison between alpha-MIIx and alpha-MII cDNAs suggested that the cloned cDNA encodes a truncated polypeptide with 796 amino acid residues, while alpha-MII consists of 1144 amino acid residues. To reevaluate the sequence of alpha-MIIx cDNA, polymerase chain reaction (PCR) was performed with lymphocyte mRNAs. Comparison of the sequence of PCR products with the alpha-MIIx genomic sequence revealed that alternative splicing of the alpha-MIIx transcript can result in an additional transcript encoding a 1139-amino acid polypeptide. Northern analysis showed transcription of alpha-MIIx in various tissues, suggesting that the alpha-MIIx gene is a housekeeping gene. COS cells transfected with alpha-MIIx cDNA containing the full-length open reading frame showed an increase of alpha-mannosidase activity. The alpha-MIIx gene was mapped to human chromosome 15q25, whereas the alpha-MII gene was mapped to 5q21-22.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An in vitro genetic system was developed as a rapid means for studying the specificity determinants of RNA-binding proteins. This system was used to investigate the origin of the RNA-binding specificity of the mammalian spliceosomal protein U1A. The U1A domain responsible for binding to U1 small nuclear RNA was locally mutagenized and displayed as a combinatorial library on filamentous bacteriophage. Affinity selection identified four U1A residues in the mutagenized region that are important for specific binding to U1 hairpin II. One of these residues (Leu-49) disproportionately affects the rates of binding and release and appears to play a critical role in locking the protein onto the RNA. Interestingly, a protein variant that binds more tightly than U1A emerged during the selection, showing that the affinity of U1A for U1 RNA has not been optimized during evolution.