284 resultados para Catalytic Subunit


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In contrast to the F-type ATPases, which use a proton gradient to generate ATP, the V-type enzymes use ATP to actively transport protons into organelles and extracellular compartments. We describe here the structure of the H-subunit (also called Vma13p) of the yeast enzyme. This is the first structure of any component of a V-type ATPase. The H-subunit is not required for assembly but plays an essential regulatory role. Despite the lack of any apparent sequence homology the structure contains five motifs similar to the so-called HEAT or armadillo repeats seen in the importins. A groove, which is occupied in the importins by the peptide that targets proteins for import into the nucleus, is occupied here by the 10 amino-terminal residues of subunit H itself. The structural similarity suggests how subunit H may interact with the ATPase itself or with other proteins. A cleft between the amino- and carboxyl-terminal domains also suggests another possible site of interaction with other factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective chemotherapy remains a key issue for successful cancer treatment in general and neuroblastoma in particular. Here we report a chemotherapeutic strategy based on catalytic antibody-mediated prodrug activation. To study this approach in an animal model of neuroblastoma, we have synthesized prodrugs of etoposide, a drug widely used to treat this cancer in humans. The prodrug incorporates a trigger portion designed to be released by sequential retro-aldol/retro-Michael reactions catalyzed by aldolase antibody 38C2. This unique prodrug was greater than 102-fold less toxic than etoposide itself in in vitro assays against the NXS2 neuroblastoma cell line. Drug activity was restored after activation by antibody 38C2. Proof of principle for local antibody-catalyzed prodrug activation in vivo was established in a syngeneic model of murine neuroblastoma. Mice with established 100-mm3 s.c. tumors who received one intratumoral injection of antibody 38C2 followed by systemic i.p. injections with the etoposide prodrug showed a 75% reduction in s.c. tumor growth. In contrast, injection of either antibody or prodrug alone had no antitumor effect. Systemic injections of etoposide at the maximum tolerated dose were significantly less effective than the intratumoral antibody 38C2 and systemic etoposide prodrug combination. Significantly, mice treated with the prodrug at 30-fold the maximum tolerated dose of etoposide showed no signs of prodrug toxicity, indicating that the prodrug is not activated by endogenous enzymes. These results suggest that this strategy may provide a new and potentially nonimmunogenic approach for targeted cancer chemotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both high- and low-molecular-weight glutenin subunits (LMW-GS) play the major role in determining the viscoelastic properties of wheat (Triticum aestivum L.) flour. To date there has been no clear correspondence between the amino acid sequences of LMW-GS derived from DNA sequencing and those of actual LMW-GS present in the endosperm. We have characterized a particular LMW-GS from hexaploid bread wheat, a major component of the glutenin polymer, which we call the 42K LMW-GS, and have isolated and sequenced the putative corresponding gene. Extensive amino acid sequences obtained directly for this 42K LMW-GS indicate correspondence between this protein and the putative corresponding gene. This subunit did not show a cysteine (Cys) at position 5, in contrast to what has frequently been reported for nucleotide-based sequences of LMW-GS. This Cys has been replaced by one occurring in the repeated-sequence domain, leaving the total number of Cys residues in the molecule the same as in various other LMW-GS. On the basis of the deduced amino acid sequence and literature-based assignment of disulfide linkages, a computer-generated molecular model of the 42K subunit was constructed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accumulation of soluble carbohydrates resulting from growth under elevated CO2 may potentially signal the repression of gene activity for the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcS). To test this hypothesis we grew rice (Oryza sativa L.) under ambient (350 μL L−1) and high (700 μL L−1) CO2 in outdoor, sunlit, environment-controlled chambers and performed a cross-switching of growth CO2 concentration at the late-vegetative phase. Within 24 h, plants switched to high CO2 showed a 15% and 23% decrease in rbcS mRNA, whereas plants switched to ambient CO2 increased 27% and 11% in expanding and mature leaves, respectively. Ribulose-1,5-bisphosphate carboxylase/oxygenase total activity and protein content 8 d after the switch increased up to 27% and 20%, respectively, in plants switched to ambient CO2, but changed very little in plants switched to high CO2. Plants maintained at high CO2 showed greater carbohydrate pool sizes and lower rbcS transcript levels than plants kept at ambient CO2. However, after switching growth CO2 concentration, there was not a simple correlation between carbohydrate and rbcS transcript levels. We conclude that although carbohydrates may be important in the regulation of rbcS expression, changes in total pool size alone could not predict the rapid changes in expression that we observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A copper-containing amine oxidase from the latex of Euphorbia characias was purified to homogeneity and the copper-free enzyme obtained by a ligand-exchange procedure. The interactions of highly purified apo- and holoenzyme with several substrates, carbonyl reagents, and copper ligands were investigated by optical spectroscopy under both aerobic and anaerobic conditions. The extinction coefficients at 278 and 490 nm were determined as 3.78 × 105 m−1 cm−1 and 6000 m−1 cm−1, respectively. Active-site titration of highly purified enzyme with substrates and carbonyl reagents showed the presence of one cofactor at each enzyme subunit. In anaerobiosis the native enzyme oxidized one equivalent substrate and released one equivalent aldehyde per enzyme subunit. The apoenzyme gave exactly the same 1:1:1 stoichiometry in anaerobiosis and in aerobiosis. These findings demonstrate unequivocally that copper-free amine oxidase can oxidize substrates with a single half-catalytic cycle. The DNA-derived protein sequence shows a characteristic hexapeptide present in most 6-hydroxydopa quinone-containing amine oxidases. This hexapeptide contains the tyrosinyl residue that can be modified into the cofactor 6-hydroxydopa quinone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the isolation of a Chlamydomonas reinhardtii cDNA that encodes the β-subunit of tryptophan synthase (TSB). This cDNA was cloned by functional complementation of a trp-operon-deleted strain of Escherichia coli. Hybridization analysis indicated that the gene exists in a single copy. The predicted amino acid sequence showed the greatest identity to TSB polypeptides from other photosynthetic organisms. With the goal of identifying mutations in the gene encoding this enzyme, we isolated 11 recessive and 1 dominant single-gene mutation that conferred resistance to 5-fluoroindole. These mutations fell into three complementation groups, MAA2, MAA7, and TAR1. In vitro assays showed that mutations at each of these loci affected TSB activity. Restriction fragment-length polymorphism analysis suggested that MAA7 encodes TSB. MAA2 and TAR1 may act to regulate the activity of MAA7 or its protein product.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The four major oligomeric reaction products from saponified modified hairy regions (MHR-S) from apple, produced by recombinant rhamnogalacturonan (RG) α-l-rhamnopyranosyl-(1,4)-α-d-galactopyranosyluronide lyase (rRG-lyase) from Aspergillus aculeatus, were isolated and characterized by 1H-nuclear magnetic resonance spectroscopy. They contain an alternating RG backbone with a degree of polymerization of 4, 6, 8, and 10 and with an α-Δ-(4,5)-unsaturated d-galactopyranosyluronic acid at the nonreducing end and an l-rhamnopyranose at the reducing end. l-Rhamnopyranose units are substituted at C-4 with β-galactose. The maximum reaction rate of rRG-lyase toward MHR-S at pH 6.0 and 31°C was 28 units mg−1. rRG-lyase and RG-hydrolase cleave the same alternating RG I subunit in MHR. Both of these enzymes fragment MHR by a multiple attack mechanism. The catalytic efficiency of rRG-lyase for MHR increases with decreasing degree of acetylation. Removal of arabinose side chains improves the action of rRG-lyase toward MHR-S. In contrast, removal of galactose side chains decreased the catalytic efficiency of rRG-lyase. Native RG-lyase was purified from A. aculeatus, characterized, and found to be similar to the rRG-lyase expressed in Aspergillus oryzae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The green alga Chlamydomonas reinhardtii mutant 76–5EN lacks photosynthesis because of a nuclear-gene mutation that specifically inhibits expression of the chloroplast gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39). Photosynthesis-competent revertants were selected from mutant 76–5EN to explore the possibility of increasing Rubisco expression. Genetic analysis of 10 revertants revealed that most arose from suppressor mutations in nuclear genes distinct from the original 76–5EN mutant gene. The revertant strains have regained various levels of Rubisco holoenzyme, but none of the suppressor mutations increased Rubisco expression above the wild-type level in either the presence or absence of the 76–5EN mutation. One suppressor mutation, S107–4B, caused a temperature-conditional, photosynthesis-deficient phenotype in the absence of the original 76–5EN mutation. The S107–4B strain was unable to grow photosynthetically at 35°C, but it expressed a substantial level of Rubisco holoenzyme. Whereas the 76–5EN gene encodes a nuclear factor that appears to be required for the transcription of the Rubisco large-subunit gene, the S107–4B nuclear gene may be required for the expression of other chloroplast genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have begun to take a genetic approach to study chloroplast protein import in Chlamydomonas reinhardtii by creating deletions in the transit peptide of the γ-subunit of chloroplast ATPase-coupling factor 1 (CF1-γ, encoded by AtpC) and testing their effects in vivo by transforming the altered genes into an atpC mutant, and in vitro by importing mutant precursors into isolated C. reinhardtii chloroplasts. Deletions that removed 20 or 23 amino acid residues from the center of the transit peptide reduced in vitro import to an undetectable level but did not affect CF1-γ accumulation in vivo. The CF1-γ transit peptide does have an in vivo stroma-targeting function, since chimeric genes in which the stroma-targeting domain of the plastocyanin transit peptide was replaced by the AtpC transit peptide-coding region allowed plastocyanin to accumulate in vivo. To determine whether the transit peptide deletions were impaired in in vivo stroma targeting, mutant and wild-type AtpC transit peptide-coding regions were fused to the bacterial ble gene, which confers bleomycin resistance. Although 25% of the wild-type fusion protein was associated with chloroplasts, proteins with transit peptide deletions remained almost entirely cytosolic. These results suggest that even severely impaired in vivo chloroplast protein import probably does not limit the accumulation of CF1-γ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cDNA of pea (Pisum sativum L.) RbcS 3A, encoding a small subunit protein (S) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), has been expressed in Arabidopsis thaliana under control of the cauliflower mosaic virus 35S promoter, and the transcript and mature S protein were detected. Specific antibodies revealed two protein spots for the four Arabidopsis S and one additional spot for pea S. Pea S in chimeric Rubisco amounted to 15 to 18% of all S, as judged by separation on two-dimensional isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels from partially purified enzyme preparations and quantitation of silver-stained protein spots. The chimeric enzyme had 11 ± 1% fewer carbamylated sites and a 11 ± 1% lower carboxylase activity than wild-type Arabidopsis Rubisco. Whereas pea S expression, preprotein transport, and processing and assembly resulted in a stable holoenzyme, the chimeric enzyme was reproducibly catalytically less efficient. We suggest that the presence of, on average, one foreign S per holoenzyme is responsible for the altered activity. In addition, higher-plant Rubisco, unlike the cyanobacterial enzyme, seems to have evolved species-specific interactions between S and the large subunit protein that are involved in carbamylation of the active site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies were conducted to identify a 64-kD thylakoid membrane protein of unknown function. The protein was extracted from chloroplast thylakoids under low ionic strength conditions and purified to homogeneity by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Four peptides generated from the proteolytic cleavage of the wheat 64-kD protein were sequenced and found to be identical to internal sequences of the chloroplast-coupling factor (CF1) α-subunit. Antibodies for the 64-kD protein also recognized the α-subunit of CF1. Both the 64-kD protein and the 61-kD CF1 α-subunit were present in the monocots barley (Hordeum vulgare), maize (Zea mays), oat (Avena sativa), and wheat (Triticum aestivum); but the dicots pea (Pisum sativum), soybean (Glycine max Merr.), and spinach (Spinacia oleracea) contained only a single polypeptide corresponding to the CF1 α-subunit. The 64-kD protein accumulated in response to high irradiance (1000 μmol photons m−2 s−1) and declined in response to low irradiance (80 μmol photons m−2 s−1) treatments. Thus, the 64-kD protein was identified as an irradiance-dependent isoform of the CF1 α-subunit found only in monocots. Analysis of purified CF1 complexes showed that the 64-kD protein represented up to 15% of the total CF1 α-subunit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have examined the transport of the precursor of the 17-kD subunit of the photosynthetic O2-evolving complex (OE17) in intact chloroplasts in the presence of inhibitors that block two protein-translocation pathways in the thylakoid membrane. This precursor uses the transmembrane pH gradient-dependent pathway into the thylakoid lumen, and its transport across the thylakoid membrane is thought to be independent of ATP and the chloroplast SecA homolog, cpSecA. We unexpectedly found that azide, widely considered to be an inhibitor of cpSecA, had a profound effect on the targeting of the photosynthetic OE17 to the thylakoid lumen. By itself, azide caused a significant fraction of mature OE17 to accumulate in the stroma of intact chloroplasts. When added in conjunction with the protonophore nigericin, azide caused the maturation of a fraction of the stromal intermediate form of OE17, and this mature protein was found only in the stroma. Our data suggest that OE17 may use the sec-dependent pathway, especially when the transmembrane pH gradient-dependent pathway is inhibited. Under certain conditions, OE17 may be inserted across the thylakoid membrane far enough to allow removal of the transit peptide, but then may slip back out of the translocation machinery into the stromal compartment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Constructs containing the cDNAs encoding the primary leaf catalase in Nicotiana or subunit 1 of cottonseed (Gossypium hirsutum) catalase were introduced in the sense and antisense orientation into the Nicotiana tabacum genome. The N. tabacum leaf cDNA specifically overexpressed CAT-1, the high catalytic form, activity. Antisense constructs reduced leaf catalase specific activities from 0.20 to 0.75 times those of wild type (WT), and overexpression constructs increased catalase specific activities from 1.25 to more than 2.0 times those of WT. The NADH-hydroxypyruvate reductase specific activity in transgenic plants was similar to that in WT. The effect of antisense constructs on photorespiration was studied in transgenic plants by measuring the CO2 compensation point (Γ) at a leaf temperature of 38°C. A significant linear increase was observed in Γ with decreasing catalase (at 50% lower catalase activity Γ increased 39%). There was a significant temperature-dependent linear decrease in Γ in transgenic leaves with elevated catalase compared with WT leaves (at 50% higher catalase Γ decreased 17%). At 29°C, Γ also decreased with increasing catalase in transgenic leaves compared with WT leaves, but the trend was not statistically significant. Rates of dark respiration were the same in WT and transgenic leaves. Thus, photorespiratory losses of CO2 were significantly reduced with increasing catalase activities at 38°C, indicating that the stoichiometry of photorespiratory CO2 formation per glycolate oxidized normally increases at higher temperatures because of enhanced peroxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hd6 is a quantitative trait locus involved in rice photoperiod sensitivity. It was detected in backcross progeny derived from a cross between the japonica variety Nipponbare and the indica variety Kasalath. To isolate a gene at Hd6, we used a large segregating population for the high-resolution and fine-scale mapping of Hd6 and constructed genomic clone contigs around the Hd6 region. Linkage analysis with P1-derived artificial chromosome clone-derived DNA markers delimited Hd6 to a 26.4-kb genomic region. We identified a gene encoding the α subunit of protein kinase CK2 (CK2α) in this region. The Nipponbare allele of CK2α contains a premature stop codon, and the resulting truncated product is undoubtedly nonfunctional. Genetic complementation analysis revealed that the Kasalath allele of CK2α increases days-to-heading. Map-based cloning with advanced backcross progeny enabled us to identify a gene underlying a quantitative trait locus even though it exhibited a relatively small effect on the phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

12/15-Lipoxygenase (LOX) activity is elevated in vascular diseases associated with impaired nitric oxide (⋅NO) bioactivity, such as hypertension and atherosclerosis. In this study, primary porcine monocytes expressing 12/15-LOX, rat A10 smooth muscle cells transfected with murine 12/15-LOX, and purified porcine 12/15-LOX all consumed ⋅NO in the presence of lipid substrate. Suppression of LOX diene conjugation by ⋅NO was also found, although the lipid product profile was unchanged. ⋅NO consumption by porcine monocytes was inhibited by the LOX inhibitor, eicosatetraynoic acid. Rates of arachidonate (AA)- or linoleate (LA)-dependent ⋅NO depletion by porcine monocytes (2.68 ± 0.03 nmol ⋅ min−1 ⋅ 106 cells−1 and 1.5 ± 0.25 nmol ⋅ min−1 ⋅ 106 cells−1, respectively) were several-fold greater than rates of ⋅NO generation by cytokine-activated macrophages (0.1–0.2 nmol ⋅ min−1 ⋅ 106 cells−1) and LA-dependent ⋅NO consumption by primary porcine monocytes inhibited ⋅NO activation of soluble guanylate cyclase. These data indicate that catalytic ⋅NO consumption by 12/15-LOX modulates monocyte ⋅NO signaling and suggest that LOXs may contribute to vascular dysfunction not only by the bioactivity of their lipid products, but also by serving as catalytic sinks for ⋅NO in the vasculature.