366 resultados para complex text layout
Resumo:
Insulin negatively regulates expression of the insulin-like growth factor binding protein 1 (IGFBP-1) gene by means of an insulin-responsive element (IRE) that also contributes to glucocorticoid stimulation of this gene. We find that the Caenorhabditis elegans protein DAF-16 binds the IGFBP-1⋅IRE with specificity similar to that of the forkhead (FKH) factor(s) that act both to enhance glucocorticoid responsiveness and to mediate the negative effect of insulin at this site. In HepG2 cells, DAF-16 and its mammalian homologs, FKHR, FKHRL1, and AFX, activate transcription through the IGFBP-1⋅IRE; this effect is inhibited by the viral oncoprotein E1A, but not by mutants of E1A that fail to interact with the coactivator p300/CREB-binding protein (CBP). We show that DAF-16 and FKHR can interact with both the KIX and E1A/SRC interaction domains of p300/CBP, as well as the steroid receptor coactivator (SRC). A C-terminal deletion mutant of DAF-16 that is nonfunctional in C. elegans fails to bind the KIX domain of CBP, fails to activate transcription through the IGFBP-1⋅IRE, and inhibits activation of the IGFBP-1 promoter by glucocorticoids. Thus, the interaction of DAF-16 homologs with the KIX domain of CBP is essential to basal and glucocorticoid-stimulated transactivation. Although AFX interacts with the KIX domain of CBP, it does not interact with SRC and does not respond to glucocorticoids or insulin. Thus, we conclude that DAF-16 and FKHR act as accessory factors to the glucocorticoid response, by recruiting the p300/CBP/SRC coactivator complex to an FKH factor site in the IGFBP-1 promoter, which allows the cell to integrate the effects of glucocorticoids and insulin on genes that carry this site.
Resumo:
The human β2-adrenergic receptor gene has multiple single-nucleotide polymorphisms (SNPs), but the relevance of chromosomally phased SNPs (haplotypes) is not known. The phylogeny and the in vitro and in vivo consequences of variations in the 5′ upstream and ORF were delineated in a multiethnic reference population and an asthmatic cohort. Thirteen SNPs were found organized into 12 haplotypes out of the theoretically possible 8,192 combinations. Deep divergence in the distribution of some haplotypes was noted in Caucasian, African-American, Asian, and Hispanic-Latino ethnic groups with >20-fold differences among the frequencies of the four major haplotypes. The relevance of the five most common β2-adrenergic receptor haplotype pairs was determined in vivo by assessing the bronchodilator response to β agonist in asthmatics. Mean responses by haplotype pair varied by >2-fold, and response was significantly related to the haplotype pair (P = 0.007) but not to individual SNPs. Expression vectors representing two of the haplotypes differing at eight of the SNP loci and associated with divergent in vivo responsiveness to agonist were used to transfect HEK293 cells. β2-adrenergic receptor mRNA levels and receptor density in cells transfected with the haplotype associated with the greater physiologic response were ≈50% greater than those transfected with the lower response haplotype. The results indicate that the unique interactions of multiple SNPs within a haplotype ultimately can affect biologic and therapeutic phenotype and that individual SNPs may have poor predictive power as pharmacogenetic loci.
Resumo:
We compared magnetoencephalographic responses for natural vowels and for sounds consisting of two pure tones that represent the two lowest formant frequencies of these vowels. Our aim was to determine whether spectral changes in successive stimuli are detected differently for speech and nonspeech sounds. The stimuli were presented in four blocks applying an oddball paradigm (20% deviants, 80% standards): (i) /α/ tokens as deviants vs. /i/ tokens as standards; (ii) /e/ vs. /i/; (iii) complex tones representing /α/ formants vs. /i/ formants; and (iv) complex tones representing /e/ formants vs. /i/ formants. Mismatch fields (MMFs) were calculated by subtracting the source waveform produced by standards from that produced by deviants. As expected, MMF amplitudes for the complex tones reflected acoustic deviation: the amplitudes were stronger for the complex tones representing /α/ than /e/ formants, i.e., when the spectral difference between standards and deviants was larger. In contrast, MMF amplitudes for the vowels were similar despite their different spectral composition, whereas the MMF onset time was longer for /e/ than for /α/. Thus the degree of spectral difference between standards and deviants was reflected by the MMF amplitude for the nonspeech sounds and by the MMF latency for the vowels.
Resumo:
The central problem of complex inheritance is to map oligogenes for disease susceptibility, integrating linkage and association over samples that differ in several ways. Combination of evidence over multiple samples with 1,037 families supports loci contributing to asthma susceptibility in the cytokine region on 5q [maximum logarithm of odds (lod) = 2.61 near IL-4], but no evidence for atopy. The principal problems with retrospective collaboration on linkage appear to have been solved, providing far more information than a single study. A multipoint lod table evaluated at commonly agreed reference loci is required for both collaboration and metaanalysis, but variations in ascertainment, pedigree structure, phenotype definition, and marker selection are tolerated. These methods are invariant with statistical methods that increase the power of lods and are applicable to all diseases, motivating collaboration rather than competition. In contrast to linkage, positional cloning by allelic association has yet to be extended to multiple samples, a prerequisite for efficient combination with linkage and the greatest current challenge to genetic epidemiology.
Resumo:
The prgHIJK operon encodes components of the Salmonella typhimurium pathogenicity island 1 type III secretion system (TTSS). Previously, prgH and prgK were shown to be required for formation of the supramolecular type III secretion needle complex (NC) [Kubori, T., et al. (1998) Science 280, 602–605]. This work indicates that all prg operon genes are required for NC formation. PrgH multimerizes into a distinct tetrameric-shaped structure that may be an early intermediate of NC assembly and may provide the structural foundation required for PrgK oligomerization. PrgH and PrgK, in the absence of other TTSS components, oligomerize into ring-shaped structures identical in appearance and size to the base of the NC, indicating that they are likely the major inner membrane structural components required for secretion. PrgI and PrgJ cofractionate with the NC and are secreted into the culture supernatant. NC from prgI and prgJ mutants have an identical morphology to the envelope-spanning (basal body) NC components, but are missing the external needle, indicating that PrgI and PrgJ are required for full NC assembly and are likely components of the external needle. Therefore, PrgI and PrgJ are secreted through the NC basal body, composed in part of PrgH/K and InvG/H rings, to participate in assembly of the more distal components of the NC.
Resumo:
The SWI/SNF family of chromatin-remodeling complexes facilitates gene expression by helping transcription factors gain access to their targets in chromatin. SWI/SNF and Rsc are distinctive members of this family from yeast. They have similar protein components and catalytic activities but differ in biological function. Rsc is required for cell cycle progression through mitosis, whereas SWI/SNF is not. Human complexes of this family have also been identified, which have often been considered related to yeast SWI/SNF. However, all human subunits identified to date are equally similar to components of both SWI/SNF and Rsc, leaving open the possibility that some or all of the human complexes are rather related to Rsc. Here, we present evidence that the previously identified human SWI/SNF-B complex is indeed of the Rsc type. It contains six components conserved in both Rsc and SWI/SNF. Importantly, it has a unique subunit, BAF180, that harbors a distinctive set of structural motifs characteristic of three components of Rsc. Of the two mammalian ATPases known to be related to those in the yeast complexes, human SWI/SNF-B contains only the homolog that functions like Rsc during cell growth. Immunofluorescence studies with a BAF180 antibody revealed that SWI/SNF-B localizes at the kinetochores of chromosomes during mitosis. Our data suggest that SWI/SNF-B and Rsc represent a novel subfamily of chromatin-remodeling complexes conserved from yeast to human, and could participate in cell division at kinetochores of mitotic chromosomes.
Resumo:
Homologous recombination in Saccharomyces cerevisiae depends critically on RAD52 function. In vitro, Rad52 protein preferentially binds single-stranded DNA (ssDNA), mediates annealing of complementary ssDNA, and stimulates Rad51 protein-mediated DNA strand exchange. Replication protein A (RPA) is a ssDNA-binding protein that is also crucial to the recombination process. Herein we report that Rad52 protein effects the annealing of RPA–ssDNA complexes, complexes that are otherwise unable to anneal. The ability of Rad52 protein to promote annealing depends on both the type of ssDNA substrate and ssDNA binding protein. RPA allows, but slows, Rad52 protein-mediated annealing of oligonucleotides. In contrast, RPA is almost essential for annealing of longer plasmid-sized DNA but has little effect on the annealing of poly(dT) and poly(dA), which are relatively long DNA molecules free of secondary structure. These results suggest that one role of RPA in Rad52 protein-mediated annealing is the elimination of DNA secondary structure. However, neither Escherichia coli ssDNA binding protein nor human RPA can substitute in this reaction, indicating that RPA has a second role in this process, a role that requires specific RPA–Rad52 protein interactions. This idea is confirmed by the finding that RPA, which is complexed with nonhomologous ssDNA, inhibits annealing but the human RPA–ssDNA complex does not. Finally, we present a model for the early steps of the repair of double-strand DNA breaks in yeast.
Resumo:
The Arp2/3 complex is a stable assembly of seven protein subunits including two actin-related proteins (Arp2 and Arp3) and five novel proteins. Previous work showed that this complex binds to the sides of actin filaments and is concentrated at the leading edges of motile cells. Here, we show that Arp2/3 complex purified from Acanthamoeba caps the pointed ends of actin filaments with high affinity. Arp2/3 complex inhibits both monomer addition and dissociation at the pointed ends of actin filaments with apparent nanomolar affinity and increases the critical concentration for polymerization at the pointed end from 0.6 to 1.0 μM. The high affinity of Arp2/3 complex for pointed ends and its abundance in amoebae suggest that in vivo all actin filament pointed ends are capped by Arp2/3 complex. Arp2/3 complex also nucleates formation of actin filaments that elongate only from their barbed ends. From kinetic analysis, the nucleation mechanism appears to involve stabilization of polymerization intermediates (probably actin dimers). In electron micrographs of quick-frozen, deep-etched samples, we see Arp2/3 bound to sides and pointed ends of actin filaments and examples of Arp2/3 complex attaching pointed ends of filaments to sides of other filaments. In these cases, the angle of attachment is a remarkably constant 70 ± 7°. From these in vitro biochemical properties, we propose a model for how Arp2/3 complex controls the assembly of a branching network of actin filaments at the leading edge of motile cells.
Resumo:
CIITA is a master transactivator of the major histocompatibility complex class II genes, which are involved in antigen presentation. Defects in CIITA result in fatal immunodeficiencies. CIITA activation is also the control point for the induction of major histocompatibility complex class II and associated genes by interferon-γ, but CIITA does not bind directly to DNA. Expression of CIITA in G3A cells, which lack endogenous CIITA, followed by in vivo genomic footprinting, now reveals that CIITA is required for the assembly of transcription factor complexes on the promoters of this gene family, including DRA, Ii, and DMB. CIITA-dependent promoter assembly occurs in interferon-γ-inducible cell types, but not in B lymphocytes. Dissection of the CIITA protein indicates that transactivation and promoter loading are inseparable and reveal a requirement for a GTP binding motif. These findings suggest that CIITA may be a new class of transactivator.
Resumo:
Natural killer (NK) cells express C-type lectin-like receptors, encoded in the NK gene complex, that interact with major histocompatibility complex class I and either inhibit or activate functional activity. Human NK cells express heterodimers consisting of CD94 and NKG2 family molecules, whereas murine NK cells express homodimers belonging to the Ly-49 family. The corresponding orthologues for other species, however, have not been described. In this report, we used probes derived from the expressed sequence tag database to clone C57BL/6-derived cDNAs homologous to human NKG2-D and CD94. Among normal tissues, murine NKG2-D and CD94 transcripts are highly expressed only in activated NK cells, including both Ly-49A+ and Ly-49A− subpopulations. Additionally, mNKG2-D is expressed in murine NK cell clones KY-1 and KY-2, whereas mCD94 expression is observed only in KY-1 cells but not KY-2. Last, we have finely mapped the physical location of the Cd94 (centromeric) and Nkg2d (telomeric) genes between Cd69 and the Ly49 cluster in the NK complex. Thus, these data indicate the expanding complexity of the NK complex and the corresponding repertoire of C-type lectin-like receptors on murine NK cells.
Resumo:
Many bacterial pathogens of plants and animals have evolved a specialized protein-secretion system termed type III to deliver bacterial proteins into host cells. These proteins stimulate or interfere with host cellular functions for the pathogen's benefit. The Salmonella typhimurium pathogenicity island 1 encodes one of these systems that mediates this bacterium's ability to enter nonphagocytic cells. Several components of this type III secretion system are organized in a supramolecular structure termed the needle complex. This structure is made of discrete substructures including a base that spans both membranes and a needle-like projection that extends outward from the bacterial surface. We demonstrate here that the type III secretion export apparatus is required for the assembly of the needle substructure but is dispensable for the assembly of the base. We show that the length of the needle segment is determined by the type III secretion associated protein InvJ. We report that InvG, PrgH, and PrgK constitute the base and that PrgI is the main component of the needle of the type III secretion complex. PrgI homologs are present in type III secretion systems from bacteria pathogenic for animals but are absent from bacteria pathogenic for plants. We hypothesize that the needle component may establish the specificity of type III secretion systems in delivering proteins into either plant or animal cells.
Resumo:
The small GTP-binding protein Cdc42 is thought to induce filopodium formation by regulating actin polymerization at the cell cortex. Although several Cdc42-binding proteins have been identified and some of them have been implicated in filopodium formation, the precise role of Cdc42 in modulating actin polymerization has not been defined. To understand the biochemical pathways that link Cdc42 to the actin cytoskeleton, we have reconstituted Cdc42-induced actin polymerization in Xenopus egg extracts. Using this cell-free system, we have developed a rapid and specific assay that has allowed us to fractionate the extract and isolate factors involved in this activity. We report here that at least two biochemically distinct components are required, based on their chromatographic behavior and affinity for Cdc42. One component is purified to homogeneity and is identified as the Arp2/3 complex, a protein complex that has been shown to nucleate actin polymerization. However, the purified complex alone is not sufficient to mediate the activity; a second component that binds Cdc42 directly and mediates the interaction between Cdc42 and the complex also is required. These results establish an important link between a signaling molecule, Cdc42, and a complex that can directly modulate actin networks in vitro. We propose that activation of the Arp2/3 complex by Cdc42 and other signaling molecules plays a central role in stimulating actin polymerization at the cell surface.
Resumo:
Tuberous sclerosis is an autosomal dominant disorder characterized by the development of aberrant growths in many tissues and organs. Linkage analysis revealed two disease-determining genes on chromosome 9 and chromosome 16. The tuberous sclerosis complex gene-2 (TSC2) on chromosome 16 encodes the tumor suppressor protein tuberin. We have shown earlier that loss of TSC2 is sufficient to induce quiescent cells to enter the cell cycle. Here we show that TSC2-negative fibroblasts exhibit a shortened G1 phase. Although the expression of cyclin E, cyclin A, p21, or Cdc25A is unaffected, TSC2-negative cells express much lower amounts of the cyclin-dependent kinase (CDK) inhibitor p27 because of decreased protein stability. In TSC2 mutant cells the amount of p27 bound to CDK2 is diminished, accompanied with elevated kinase activity. Ectopic expression studies revealed that the aforementioned effects can be reverted by transfecting TSC2 in TSC2-negative cells. High ectopic levels of p27 have cell cycle inhibitory effects in TSC2-positive cells but not in TSC2-negative counterparts, although the latter still depend on CDK2 activity. Loss of TSC2 induces soft agar growth of fibroblasts, a process that cannot be inhibited by high levels of p27. Both phenotypes of TSC2-negative cells, their resistance to the activity of ectopic p27, and the instability of endogenous p27, could be explained by our observation that the nucleoprotein p27 is mislocated into the cytoplasm upon loss of TSC2. These findings provide insights into the molecular mechanism of how loss of TSC2 induces cell cycle entry and allow a better understanding of its tumor suppressor function.