213 resultados para allo-HSCT, GvL, GvHD, cDNA-expression cloning, allo-reactive T cells


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Overlapping cDNA clones spanning the entire coding region of a Na-channel alpha subunit were isolated from cultured Schwann cells from rabbits. The coding region predicts a polypeptide (Nas) of 1984 amino acids exhibiting several features characteristic of Na-channel alpha subunits isolated from other tissues. Sequence comparisons showed that the Nas alpha subunit resembles most the family of Na channels isolated from brain (approximately 80% amino acid identity) and is least similar (approximately 55% amino acid identity) to the atypical Na channel expressed in human heart and the partial rat cDNA, NaG. As for the brain II and III isoforms, two variants of Nas exist that appear to arise by alternative splicing. The results of reverse transcriptase-polymerase chain reaction experiments suggest that expression of Nas transcripts is restricted to cells in the peripheral and central nervous systems. Expression was detected in cultured Schwann cells, sciatic nerve, brain, and spinal cord but not in skeletal or cardiac muscle, liver, kidney, or lung.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We recently isolated human cDNA fragments that render MCF-7 breast cancer cells resistant to cell death caused by Pseudomonas exotoxin, Pseudomonas exotoxin-derived immunotoxins, diphtheria toxin, and tumor necrosis factor. We report here that one of these fragments is an antisense fragment of a gene homologous to the essential yeast chromosome segregation gene CSE1. Cloning and analysis of the full-length cDNA of the human CSE1 homologue, which we name CAS for cellular apoptosis susceptibility gene, reveals a protein coding region with similar length (971 amino acids for CAS, 960 amino acids for CSE1) and 59% overall protein homology to the yeast CSE1 protein. The conservation of this gene indicates it has an important function in human cells consistent with the essential role of CSE1 in yeast. CAS is highly expressed in human tumor cell lines and in human testis and fetal liver, tissues that contain actively dividing cells. Furthermore, CAS expression increases when resting human fibroblasts are induced to proliferate and decreases when they are growth-arrested. Thus, CAS appears to play an important role in both toxin and tumor necrosis factor-mediated cell death, as well as in cell proliferation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The sensing of an odorant by an animal must be a rapid but transient process, requiring an instant response and also a speedy termination of the signal. Previous biochemical and electrophysiological studies suggest that one or more phosphodiesterases (PDEs) may play an essential role in the rapid termination of the odorant-induced cAMP signal. Here we report the molecular cloning, expression, and characterization of a cDNA from rat olfactory epithelium that encodes a member of the calmodulin-dependent PDE family designated as PDE1C. This enzyme shows high affinity for cAMP and cGMP, having a Km for cAMP much lower than that of any other neuronal Ca2+/calmodulin-dependent PDE. The mRNA encoding this enzyme is highly enriched in olfactory epithelium and is not detected in six other tissues tested. However, RNase protection analyses indicate that other alternative splice variants related to this enzyme are expressed in several other tissues. Within the olfactory epithelium, this enzyme appears to be expressed exclusively in the sensory neurons. The high affinity for cAMP of this Ca2+/calmodulin-dependent PDE and the fact that its mRNA is highly concentrated in olfactory sensory neurons suggest an important role for it in a Ca(2+)-regulated olfactory signal termination.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

TFC5, the unique and essential gene encoding the B" component of the Saccharomyces cerevisiae RNA polymerase III transcription factor (TF)IIIB has been cloned. It encodes a 594-amino acid protein (67,688 Da). Escherichia coli-produced B" has been used to reconstitute entirely recombinant TFIIIB that is fully functional for TFIIIC-directed, as well as TATA box-dependent, DNA binding and transcription. The DNase I footprints of entirely recombinant TFIIIB, composed of B", the 67-kDa Brf, and TATA box-binding protein, and TFIIIB reconstituted with natural B" are indistinguishable. A truncated form of B" lacking 39 N-terminal and 107 C-terminal amino acids is also functional for transcription.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fatty acid synthase (FAS; EC 2.3.1.85) was purified to near homogeneity from a human hepatoma cell line, HepG2. The HepG2 FAS has a specific activity of 600 nmol of NADPH oxidized per min per mg, which is about half that of chicken liver FAS. All the partial activities of human FAS are comparable to those of other animal FASs, except for the beta-ketoacyl synthase, whose significantly lower activity is attributable to the low 4'-phosphopantetheine content of HepG2 FAS. We cloned the human brain FAS cDNA. The cDNA sequence has an open reading frame of 7512 bp that encodes 2504 amino acids (M(r), 272,516). The amino acid sequence of the human FAS has 79% and 63% identity, respectively, with the sequences of the rat and chicken enzymes. Northern analysis revealed that human FAS mRNA was about 9.3 kb in size and that its level varied among human tissues, with brain, lung, and liver tissues showing prominent expression. The nucleotide sequence of a segment of the HepG2 FAS cDNA (bases 2327-3964) was identical to that of the cDNA from normal human liver and brain tissues, except for a 53-bp sequence (bases 3892-3944) that does not alter the reading frame. This altered sequence is also present in HepG2 genomic DNA. The origin and significance of this sequence variance in the HepG2 FAS gene are unclear, but the variance apparently does not contribute to the lower activity of HepG2 FAS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Prolactin (PRL) induces transcriptional activation of milk protein genes, such as the whey acidic protein (WAP), beta-casein, and beta-lactoglobulin genes, through a signaling cascade encompassing the Janus kinase Jak2 and the mammary gland factor (MGF; also called Stat5), which belongs to the family of proteins of signal transducers and activators of transcription (STAT). We isolated and sequenced from mouse mammary tissue Stat5 mRNA and a previously unreported member, which we named Stat5b (Stat5 is renamed to Stat5a). On the protein level Stat5a and Stat5b show a 96% sequence similarity. The 5' and 3' untranslated regions of the two mRNAs are not conserved. Stat5a comprises 793 amino acids and is encoded by a mRNA of 4.2 kb. The Stat5b mRNA has a size of 5.6 kb and encodes a protein of 786 amino acids. Both Stat5a and Stat5b recognized the GAS site (gamma-interferon-activating sequence; TTCNNNGAA) in vitro and mediated PRL-induced transcription in COS cells transfected with a PRL receptor. Stat5b also induced basal transcription in the absence of PRL. Similar levels of Stat5a and Stat5b mRNAs were found in most tissues of virgin and lactating mice, but a differential accumulation of the Stat5 mRNAs was found in muscle and mammary tissue. The two RNAs are present in mammary tissue of immature virgin mice, and their levels increase up to day 16 of pregnancy, followed by a decline during lactation. The increase of Stat5 expression during pregnancy coincides with the activation of the WAP gene.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have cloned two inwardly rectifying K+ channels that occur selectively in neurons in the brain and are designated BIRK (brain inwardly rectifying K+) channels. BIRK1 mRNA is extremely abundant and is enriched in specific brainstem nuclei, BIRK1 displays a consensus phosphate-binding loop, and expression in Xenopus oocytes has shown that its conductance is inhibited by ATP and adenosine 5'-[gamma-thio]triphosphate. BIRK2 is far less abundant and is selectively localized in telencephalic neurons. BIRK2 has a consensus sequence for cAMP-dependent phosphorylation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The rapid progress in the cloning of proteoglycan genes has enabled investigators to examine in depth the functional roles these polyhedric molecules play in the control of cell proliferation. Decorin, a leucine-rich proteoglycan expressed by most connective tissues, is a prototype molecule that regulates cellular growth via two mechanisms: modulation of growth factor activity and matrix assembly. We now provide direct evidence that human colon cancer cells stably transfected with decorin cDNA exhibit a marked suppression of the transformed phenotype: the cells have a reduced growth rate in vitro, form small colonies in soft agar, and do not generate tumors in scid/scid mice. Several independent clones are arrested in the G1 phase of the cell cycle, and their growth suppression can be restored by treatment with decorin antisense oligodeoxynucleotides. These effects are independent of growth factors and are not due to either clonal selection or integration site of the decorin gene. These findings correlate well with the observation that decorin gene expression is markedly up-regulated during quiescence. Decorin thus appears to be one component of a negative loop that controls cell growth.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The human squamous cell carcinoma cell line SCC83-01-82 (SCC) contains mutations in both the H-ras and p53 genes, but it exhibits a nontumorigenic phenotype in nude mice. This cell line can be converted into a cell line with a tumorigenic phenotype, SCC83-01-82CA (CA), by treatment with the mutagen methyl methanesulfonate (MMS). This indicates that additional genetic events leading to expression of a cooperating tumor susceptibility gene(s) may be required for tumorigenicity. To identify the cooperating gene(s), an expression cDNA library was made from tumorigenic Ca cells. The library DNA was transfected into nontumorigenic SCC cells and the transfected SCC cells were then injected into nude mice for the selection of a tumorigenic phenotype. Tumors developed in 3 of the 18 mice after injection. Several new cell lines were established from these transfected cell-induced tumors and designated as CATR cells. Tumor histology and karyotype analysis of these cells indicated that they were of human epithelial cell origin. All the CATR cells have the library vector sequence integrated in their genome. Cell line CATR1 expressed a single message from the integrated library representing a 1.3-kb cDNA insert that was absent from untransfected SCC cells or MMS-converted CA cells. This 1.3-kb cDNA insert was cloned by PCR amplification of reverse-transcribed CATR1 total RNA and was designated CATR1.3. The nucleotide sequence of CATR1.3 encodes a peptide of 79 amino acids, has a long 3' untranslated region, and represents an unknown gene product that was associated with the tumorigenic conversion due to the transfected expression library.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many human malignant cells lack methylthioadenosine phosphorylase (MTAP) enzyme activity. The gene (MTAP) encoding this enzyme was previously mapped to the short arm of chromosome 9, band p21-22, a region that is frequently deleted in multiple tumor types. To clone candidate tumor suppressor genes from the deleted region on 9p21-22, we have constructed a long-range physical map of 2.8 megabases for 9p21 by using overlapping yeast artificial chromosome and cosmid clones. This map includes the type IIFN gene cluster, the recently identified candidate tumor suppressor genes CDKN2 (p16INK4A) and CDKN2B (p15INK4B), and several CpG islands. In addition, we have identified other transcription units within the yeast artificial chromosome contig. Sequence analysis of a 2.5-kb cDNA clone isolated from a CpG island that maps between the IFN genes and CDKN2 reveals a predicted open reading frame of 283 amino acids followed by 1302 nucleotides of 3' untranslated sequence. This gene is evolutionarily conserved and shows significant amino acid homologies to mouse and human purine nucleoside phosphorylases and to a hypothetical 25.8-kDa protein in the pet gene (coding for cytochrome bc1 complex) region of Rhodospirillum rubrum. The location, expression pattern, and nucleotide sequence of this gene suggest that it codes for the MTAP enzyme.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transcription factor TFIID consists of TATA binding protein (TBP) and at least eight TBP-associated factors (TAFs). As TAFs are required for activated but not basal transcription, we have proposed that TAFs act as coactivators to mediate signals between activators and the basal transcription machinery. Here we report the cloning, expression, and biochemical characterization of the 32-kDa subunit of human (h) TFIID, termed hTAFII32. We find that hTAFII32 is the human homologue of Drosophila TAFII40. In vitro protein-protein interaction assays reveal that as observed with Drosophila TAFII40, hTAFII32 interacts with the C-terminal 39-amino acid activation domain of the acidic transactivator viral protein 16 (VP16) as well as with the general transcription factor TFIIB. Moreover, a partial recombinant TFIID complex containing hTAFII32 was capable of mediating in vitro transcriptional activation by the VP16 activation domain. These findings indicate that specific activator-coactivator interactions have been conserved between human and Drosophila and provide additional support for the function of these interactions in mediating transcriptional activation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bombesin is a tetradecapeptide originally isolated from frog skin and demonstrated to have a wide range of actions in mammals. Based on structural homology and similar biological activities, gastrin-releasing peptide (GRP) has been considered the mammalian equivalent of bombesin. We previously reported that frogs have both GRP and bombesin, which therefore are distinct peptides. We now report the cloning of a bombesin receptor subtype (BB4) that has higher affinity for bombesin than GRP. PCR was used to amplify cDNAs related to the known bombesin receptors from frog brain. Sequence analysis of the amplified cDNAs revealed 3 classes of receptor subtypes. Based on amino acid homology, two classes were clearly the amphibian homologs of the GRP and neuromedin B receptors. The third class was unusual and a full-length clone was isolated from a Bombina orientalis brain cDNA library. Expression of the receptor in Xenopus oocytes demonstrated that the receptor responded to picomolar concentrations of [Phe13]-bombesin, the form of bombesin most prevalent in frog brain. The relative rank potency of bombesin-like peptides for this receptor was [Phe13]bombesin > [Leu13]bombesin > GRP > neuromedin B. In contrast, the rank potency for the GRP receptor is GRP > [Leu13]bombesin > [Phe13]bombesin > neuromedin B. Transient expression in CHOP cells gave a Ki for [Phe13]bombesin of 0.2 nM versus a Ki of 2.1 nM for GRP. Distribution analysis showed that this receptor was expressed only in brain, consistent with the distribution of [Phe13]-bombesin. Thus, based on distribution and affinity, this bombesin receptor is the receptor for [Phe13]bombesin. Phylogenetic analysis suggests that this receptor separated prior to separation of the GRP and neuromedin B receptors; thus, BB4 receptors and their cognate ligands may also exist in mammals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Trans-synaptic activation of gene expression is linked to long-term plastic adaptations in the nervous system. To examine the molecular program induced by synaptic activity, we have employed molecular cloning techniques to identify an immediate early gene that is rapidly induced in the brain. We here report the entire nucleotide sequence of the cDNA, which encodes an open reading frame of 396 amino acids. Within the hippocampus, constitutive expression was low. Basal levels of expression in the cortex were high but can be markedly reduced by blockade of N-methyl-D-aspartate receptors. By contrast, synaptic activity induced by convulsive seizures increased mRNA levels in neurons of the cortex and hippocampus. High-frequency stimulation of the perforant path resulted in long-term potentiation and a spatially confined dramatic increase in the level of mRNA in the granule cells of the ipsilateral dentate gyrus. Transcripts were localized to the soma and to the dendrites of the granule cells. The dendritic localization of the transcripts offers the potential for local synthesis of the protein at activated postsynaptic sites and may underlie synapse-specific modifications during long-term plastic events.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Prolyl 4-hydroxylase (EC 1.14.11.2) catalyzes the posttranslational formation of 4-hydroxyproline in collagens. The vertebrate enzyme is an alpha 2 beta 2 tetramer, the beta subunit of which is a highly unusual multifunctional polypeptide, being identical to protein disulfide-isomerase (EC 5.3.4.1). We report here the cloning of a second mouse alpha subunit isoform, termed the alpha (II) subunit. This polypeptide consists of 518 aa and a signal peptide of 19 aa. The processed polypeptide is one residue longer than the mouse alpha (I) subunit (the previously known type), the cloning of which is also reported here. The overall amino acid sequence identity between the mouse alpha (II) and alpha (I) subunits is 63%. The mRNA for the alpha (II) subunit was found to be expressed in a variety of mouse tissues. When the alpha (II) subunit was expressed together with the human protein disulfide-isomerase/beta subunit in insect cells by baculovirus vectors, an active prolyl 4-hydroxylase was formed, and this protein appeared to be an alpha (II) 2 beta 2 tetramer. The activity of this enzyme was very similar to that of the human alpha (I) 2 beta 2 tetramer, and most of its catalytic properties were also highly similar, but it differed distinctly from the latter in that it was inhibited by poly(L-proline) only at very high concentrations. This property may explain why the type II enzyme was not recognized earlier, as an early step in the standard purification procedure for prolyl 4-hydroxylase is affinity chromatography on a poly(L-proline) column.