213 resultados para RNA degradosome
Resumo:
Multiple members of the ADAR (adenosine deaminases acting on RNA) gene family are involved in A-to-I RNA editing. It has been speculated that they may form a large multicomponent protein complex. Possible candidates for such complexes are large nuclear ribonucleoprotein (lnRNP) particles. The lnRNP particles consist mainly of four spliceosomal subunits that assemble together with the pre-mRNA to form a large particle and thus are viewed as the naturally assembled pre-mRNA processing machinery. Here we investigated the presence of ADARs in lnRNP particles by Western blot analysis using anti-ADAR antibodies and by indirect immunoprecipitation. Both ADAR1 and ADAR2 were found associated with the spliceosomal components Sm and SR proteins within the lnRNP particles. The two ADARs, associated with lnRNP particles, were enzymatically active in site-selective A-to-I RNA editing. We demonstrate the association of ADAR RNA editing enzymes with physiological supramolecular complexes, the lnRNP particles.
Resumo:
RNA viruses evolve rapidly. One source of this ability to rapidly change is the apparently high mutation frequency in RNA virus populations. A high mutation frequency is a central tenet of the quasispecies theory. A corollary of the quasispecies theory postulates that, given their high mutation frequency, animal RNA viruses may be susceptible to error catastrophe, where they undergo a sharp drop in viability after a modest increase in mutation frequency. We recently showed that the important broad-spectrum antiviral drug ribavirin (currently used to treat hepatitis C virus infections, among others) is an RNA virus mutagen, and we proposed that ribavirin's antiviral effect is by forcing RNA viruses into error catastrophe. However, a direct demonstration of error catastrophe has not been made for ribavirin or any RNA virus mutagen. Here we describe a direct demonstration of error catastrophe by using ribavirin as the mutagen and poliovirus as a model RNA virus. We demonstrate that ribavirin's antiviral activity is exerted directly through lethal mutagenesis of the viral genetic material. A 99.3% loss in viral genome infectivity is observed after a single round of virus infection in ribavirin concentrations sufficient to cause a 9.7-fold increase in mutagenesis. Compiling data on both the mutation levels and the specific infectivities of poliovirus genomes produced in the presence of ribavirin, we have constructed a graph of error catastrophe showing that normal poliovirus indeed exists at the edge of viability. These data suggest that RNA virus mutagens may represent a promising new class of antiviral drugs.
Resumo:
Maternally encoded RNAs and proteins program the early development of all animals. A subset of the maternal transcripts is eliminated from the embryo before the midblastula transition. In certain cases, transcripts are protected from degradation in a subregion of the embryonic cytoplasm, thus resulting in transcript localization. Maternal factors are sufficient for both the degradation and protection components of transcript localization. Cis-acting elements in the RNAs convert transcripts progressively (i) from inherently stable to unstable and (ii) from uniformly degraded to locally protected. Similar mechanisms are likely to act later in development to restrict certain classes of transcripts to particular cell types within somatic cell lineages. Functions of transcript degradation and protection are discussed.
Resumo:
Plastid genes in photosynthetic higher plants are transcribed by at least two RNA polymerases. The plastid rpoA, rpoB, rpoC1, and rpoC2 genes encode subunits of the plastid-encoded plastid RNA polymerase (PEP), an Escherichia coli-like core enzyme. The second enzyme is referred to as the nucleus-encoded plastid RNA polymerase (NEP), since its subunits are assumed to be encoded in the nucleus. Promoters for NEP have been previously characterized in tobacco plants lacking PEP due to targeted deletion of rpoB (encoding the β-subunit) from the plastid genome. To determine if NEP and PEP share any essential subunits, the rpoA, rpoC1, and rpoC2 genes encoding the PEP α-, β′-, and β"-subunits were removed by targeted gene deletion from the plastid genome. We report here that deletion of each of these genes yielded photosynthetically defective plants that lack PEP activity while maintaining transcription specificity from NEP promoters. Therefore, rpoA, rpoB, rpoC1, and rpoC2 encode PEP subunits that are not essential components of the NEP transcription machinery. Furthermore, our data indicate that no functional copy of rpoA, rpoB, rpoC1, or rpoC2 that could complement the deleted plastid rpo genes exists outside the plastids.
Resumo:
In an RNA world, RNAs would have regulated traffic through normally impermeable bilayer membranes. Using selection-amplification we previously found RNAs that bind stably and increase the ionic conductance of phospholipid membranes at high Mg2+ and Ca2+ concentrations. Now selection in reduced divalents yields RNAs that bind phosphatidylcholine liposomes under conditions closer to physiological. Such affinity for phospholipid membranes requires interactions between RNAs. In fact, we detected no functional monomeric membrane-binding RNAs. A membrane-active end-to-end heterotrimer consisting of 2 RNA 9 and 1 RNA 10 is defined by nucleotide protection, oligonucleotide competition, and mutant analysis. Oligomers of the heterotrimer bind stably, cause release of liposome-encapsulated solutes, and disrupt model black membranes. Individual RNA molecules do not show any of these activities. This novel mechanism of RNA binding to lipid membranes may not only regulate membrane permeability, but suggests that arrays of catalytic or structural RNAs on membranes are plausible. Finally, a selection met only by RNA complexes evokes new possibilities for selection-amplification itself.
Resumo:
Plakophilin 2, a member of the arm-repeat protein family, is a dual location protein that occurs both in the cytoplasmic plaques of desmosomes as an architectural component and in an extractable form in the nucleoplasm. Here we report the existence of two nuclear particles containing plakophilin 2 and the largest subunit of RNA polymerase (pol) III (RPC155), both of which colocalize and are coimmunoselected with other pol III subunits and with the transcription factor TFIIIB. We also show that plakophilin 2 is present in the pol III holoenzyme, but not the core complex, and that it binds specifically to RPC155 in vitro. We propose the existence of diverse nuclear particles in which proteins known as plaque proteins of intercellular junctions are complexed with specific nuclear proteins.
Resumo:
The ribonucleoprotein telomerase synthesizes telomeric DNA by copying an intrinsic RNA template. In most cancer cells, telomerase is highly activated. Here we report a telomerase-based antitumor strategy: expression of mutant-template telomerase RNAs in human cancer cells. We expressed mutant-template human telomerase RNAs in prostate (LNCaP) and breast (MCF-7) cancer cell lines. Even a low threshold level of expression of telomerase RNA gene constructs containing various mutant templates, but not the control wild-type template, decreased cellular viability and increased apoptosis. This occurred despite the retention of normal levels of the endogenous wild-type telomerase RNA and endogenous wild-type telomerase activity and unaltered stable telomere lengths. In vivo tumor xenografts of a breast cancer cell line expressing a mutant-template telomerase RNA also had decreased growth rates. Therefore, mutant-template telomerase RNAs exert a strongly dominant-negative effect on cell proliferation and tumor growth. These results support the potential use of mutant-template telomerase RNA expression as an antineoplastic strategy.
Resumo:
Heteroduplex joints are general intermediates of homologous genetic recombination in DNA genomes. A heteroduplex joint is formed between a single-stranded region (or tail), derived from a cleaved parental double-stranded DNA, and homologous regions in another parental double-stranded DNA, in a reaction mediated by the RecA/Rad51-family of proteins. In this reaction, a RecA/Rad51-family protein first forms a filamentous complex with the single-stranded DNA, and then interacts with the double-stranded DNA in a search for homology. Studies of the three-dimensional structures of single-stranded DNA bound either to Escherichia coli RecA or Saccharomyces cerevisiae Rad51 have revealed a novel extended DNA structure. This structure contains a hydrophobic interaction between the 2′ methylene moiety of each deoxyribose and the aromatic ring of the following base, which allows bases to rotate horizontally through the interconversion of sugar puckers. This base rotation explains the mechanism of the homology search and base-pair switch between double-stranded and single-stranded DNA during the formation of heteroduplex joints. The pivotal role of the 2′ methylene-base interaction in the heteroduplex joint formation is supported by comparing the recombination of RNA genomes with that of DNA genomes. Some simple organisms with DNA genomes induce homologous recombination when they encounter conditions that are unfavorable for their survival. The extended DNA structure confers a dynamic property on the otherwise chemically and genetically stable double-stranded DNA, enabling gene segment rearrangements without disturbing the coding frame (i.e., protein-segment shuffling). These properties may give an extensive evolutionary advantage to DNA.
Resumo:
Caenorhabditis elegans is an ideal organism for the study of the molecular basis of fundamental biological processes such as germ-line development, especially because of availability of the whole genome sequence and applicability of the RNA interference (RNAi) technique. To identify genes involved in germ-line development, we produced subtracted cDNA pools either enriched for or deprived of the cDNAs from germ-line tissues. We then performed differential hybridization on the high-density cDNA grid, on which about 7,600 nonoverlapping expressed sequence tag (EST) clones were spotted, to identify a set of genes specifically expressed in the germ line. One hundred and sixty-eight clones were then tested with the RNAi technique. Of these, 15 clones showed sterility with a variety of defects in germ-line development. Seven of them led to the production of unfertilized eggs, because of defects in spermatogenesis (4 clones), or defects in the oocytes (3 clones). The other 8 clones led to failure of oogenesis. These failures were caused by germ-line proliferation defect (Glp phenotype), meiotic arrest, and defects in sperm–oocyte switch (Mog phenotype) among others. These results demonstrate the efficacy of the screening strategy using the EST library combined with the RNAi technique in C. elegans.
Resumo:
The turnip yellow mosaic virus genomic RNA terminates at its 3' end in a tRNA-like structure that is capable of specific valylation. By directed mutation, the aminoacylation specificity has been switched from valine to methionine, a novel specificity for viral tRNA-like structures. The switch to methionine specificity, assayed in vitro under physiological buffer conditions with wheat germ methionyl-tRNA synthetase, required mutation of the anticodon loop and the acceptor stem pseudoknot. The resultant methionylatable genomes are infectious and stable in plants, but genomes that lack strong methionine acceptance (as previously shown with regard to valine acceptance) replicate poorly. The results indicate that amplification of turnip yellow mosaic virus RNA requires aminoacylation, but that neither the natural (valine) specificity nor interaction specifically with valyl-tRNA synthetase is crucial.
Resumo:
The intercistronic region between the maturation and coat-protein genes of RNA phage MS2 contains important regulatory and structural information. The sequence participates in two adjacent stem-loop structures, one of which, the coat-initiator hairpin, controls coat-gene translation and is thus under strong selection pressure. We have removed 19 out of the 23 nucleotides constituting the intercistronic region, thereby destroying the capacity of the phage to build the two hairpins. The deletion lowered coat-protein yield more than 1000-fold, and the titer of the infectious clone carrying the deletion dropped 10 orders of magnitude as compared with the wild type. Two types of revertants were recovered. One had, in two steps, recruited 18 new nucleotides that served to rebuild the two hairpins and the lost Shine-Dalgarno sequence. The other type had deleted an additional six nucleotides, which allowed the reconstruction of the Shine-Dalgarno sequence and the initiator hairpin, albeit by sacrificing the remnants of the other stem-loop. The results visualize the immense genetic repertoire created by, what appears as, random RNA recombination. It would seem that in this genetic ensemble every possible new RNA combination is represented.
Resumo:
Tumor necrosis factor alpha (TNF-alpha) is well-characterized for its necrotic action against tumor cells; however, it has been increasingly associated with an apoptosis-inducing potential on target cells. While the signaling events and the actual cytolytic mechanism(s) for both TNF-alpha-induced necrosis and apoptosis remain to be fully elucidated, we report here on (i) the ability of TNF-alpha to induce apoptosis in the promonocytic U937 cells, (ii) the discovery of a cross-talk between the TNF-alpha and the interferon signaling pathways, and (iii) the pivotal role of interferon-inducible, double-stranded RNA-activated protein kinase (PKR) in the induction of apoptosis by TNF-alpha. Our data from microscopy studies, trypan blue exclusion staining, and apoptotic DNA ladder electrophoresis revealed that a subclone derived from U937 and carrying a PKR antisense expression vector was resistant to TNF-alpha-induced apoptosis. Further, TNF-alpha initiated a generalized RNA degradation process in which the participation of PKR was required. Finally, the PKR gene is a candidate "death gene" since overexpression of this gene could bring about apoptosis in U937 cells.
Resumo:
The complete nucleotide sequence, 5178 bp, of the totivirus Helminthosporium vicotoriae 190S virus (Hv190SV) double-stranded RNA, was determined. Computer-assisted sequence analysis revealed the presence of two large overlapping ORFs; the 5'-proximal large ORF (ORF1) codes for the coat protein (CP) with a predicted molecular mass of 81 kDa, and the 3'-proximal ORF (ORF2), which is in the -1 frame relative to ORF1, codes for an RNA-dependent RNA polymerase (RDRP). Unlike many other totiviruses, the overlap region between ORF1 and ORF2 lacks known structural information required for translational frameshifting. Using an antiserum to a C-terminal fragment of the RDRP, the product of ORF2 was identified as a minor virion-associated polypeptide of estimated molecular mass of 92 kDa. No CP-RDRP fusion protein with calculated molecular mass of 165 kDa was detected. The predicted start codon of the RDRP ORF (2605-AUG-2607) overlaps with the stop codon (2606-UGA-2608) of the CP ORF, suggesting RDRP is expressed by an internal initiation mechanism. Hv190SV is associated with a debilitating disease of its phytopathogenic fungal host. Knowledge of its genome organization and expression will be valuable for understanding its role in pathogenesis and for potential exploitation in the development of biocontrol measures.
Resumo:
Transgenic tobacco (Nicotiana tabacum cv. Turkish Samsun NN) plants expressing a truncated replicase gene sequence from RNA-2 of strain Fny of cucumber mosaic virus (CMV) are resistant to systemic CMV disease. This is due to suppression of virus replication and cell-to-cell movement in the inoculated leaves of these plants. In this study, microinjection protocols were used to directly examine cell-to-cell trafficking of CMV viral RNA in these resistant plants. CMV RNA fluorescently labeled with the nucleotide-specific TOTO-1 iodide dye, when coinjected with unlabeled CMV 3a movement protein (MP), moved rapidly into the surrounding mesophyll cells in mature tobacco leaves of vector control and untransformed plants. Such trafficking required the presence of functional CMV 3a MP. In contrast, coinjection of CMV 3a MP and CMV TOTO-RNA failed to move in transgenic resistant plants expressing the CMV truncated replicase gene. Furthermore, coinjection of 9.4-kDa fluorescein-conjugated dextran (F-dextran) along with unlabeled CMV 3a MP resulted in cell-to-cell movement of the F-dextran in control plants, but not in the transgenic plants. Similar results were obtained with viral RNA when the 30-kDa MP of tobacco mosaic virus (TMV) was coinjected with TMV TOTO-RNA into replicase-resistant transgenic tobacco expressing the 54-kDa gene sequence of TMV. However, in these transgenic plants, the TMV-MP was still capable of mediating cell-to-cell movement of itself and the 9.4-kDa F-dextran. These results indicate that an inhibition of cell-to-cell viral RNA trafficking is correlated with replicase-mediated resistance. This raises the possibility that the RNA-2 product is potentially involved in the regulation of cell-to-cell movement of viral infectious material during CMV replication.
Resumo:
The negative-strand RNA viruses are a broad group of animal viruses that comprise several important human pathogens, including influenza, measles, mumps, rabies, respiratory syncytial, Ebola, and hantaviruses. The development of new strategies to genetically manipulate the genomes of negative-strand RNA viruses has provided us with new tools to study the structure-function relationships of the viral components and their contributions to the pathogenicity of these viruses. It is also now possible to envision rational approaches--based on genetic engineering techniques--to design live attenuated vaccines against some of these viral agents. In addition, the use of different negative-strand RNA viruses as vectors to efficiently express foreign polypeptides has also become feasible, and these novel vectors have potential applications in disease prevention as well as in gene therapy.