206 resultados para small subunit ribosomal RNA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 5' noncoding region of poliovirus RNA contains an internal ribosome entry site (IRES) for cap-independent initiation of translation. Utilization of the IRES requires the participation of one or more cellular proteins that mediate events in the translation initiation reaction, but whose biochemical roles have not been defined. In this report, we identify a cellular RNA binding protein isolated from the ribosomal salt wash of uninfected HeLa cells that specifically binds to stem-loop IV, a domain located in the central part of the poliovirus IRES. The protein was isolated by specific RNA affinity chromatography, and 55% of its sequence was determined by automated liquid chromatography-tandem mass spectrometry. The sequence obtained matched that of poly(rC) binding protein 2 (PCBP2), previously identified as an RNA binding protein from human cells. PCBP2, as well as a related protein, PCBP1, was over-expressed in Escherichia coli after cloning the cDNAs into an expression plasmid to produce a histidine-tagged fusion protein. Specific interaction between recombinant PCBP2 and poliovirus stem-loop IV was demonstrated by RNA mobility shift analysis. The closely related PCBP1 showed no stable interaction with the RNA. Stem-loop IV RNA containing a three nucleotide insertion that abrogates translation activity and virus viability was unable to bind PCBP2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To replicate, HIV-1 must integrate a cDNA copy of the viral RNA genome into a chromosome of the host. The integration system is a promising target for antiretroviral agents, but to date no clinically useful integration inhibitors have been identified. Previous screens for integrase inhibitors have assayed inhibition of reactions containing HIV-1 integrase purified from an Escherichia coli expression system. Here we compare action of inhibitors in vitro on purified integrase and on subviral preintegration complexes (PICs) isolated from lymphoid cells infected with HIV-1. We find that many inhibitors active against purified integrase are inactive against PICs. Using PIC assays as a primary screen, we have identified three new anthraquinone inhibitors active against PICs and also against purified integrase. We propose that PIC assays are the closest in vitro match to integration in vivo and, as such, are particularly appropriate for identifying promising integration inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have cloned and expressed a Ca(2+)-activated K+ channel beta-subunit from human brain. The open reading frame encodes a 191-amino acid protein possessing significant homology to a previously described subunit cloned from bovine muscle. The gene for this subunit is located on chromosome 5 at band q34 (hslo-beta). There is no evidence for alternative RNA splicing of this gene product. hslo-beta mRNA is abundantly expressed in smooth muscle, but expression levels are low in most other tissues, including brain. Brain subregions in which beta-subunit mRNA expression is relatively high are the hippocampus and corpus callosum. The coexpression of hslo-beta mRNA together with hslo-alpha subunits in either Xenopus oocytes or stably transfected HEK 293 cells give rise to Ca(2+)-activated potassium currents with a much increased calcium and/or voltage sensitivity. These data indicate that the beta-subunit shows a tissue distribution different to that of the alpha-subunit, and in many tissues there may be no association of alpha-subunits with beta-subunits. These beta-subunits can play a functional role in the regulation of neuronal excitability by tuning the Ca2+ and/or the voltage dependence of alpha-subunits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vaccinia virus early transcription factor (VETF), a heterodimeric protein composed of 82- and 70-kDa subunits, interacts with viral early promoters at both a sequence-specific core region upstream and a sequence-independent region downstream of the RNA start site. To determine the VETF subunit-promoter interactions, 32P-labeled DNA targets were chemically synthesized with uniquely positioned phosphorothioates to which azidophenacyl bromide moieties were coupled. After incubating the derivatized promoter with VETF and exposing the complex to 302-nm light, the protein was denatured and the individual subunits with or without covalently bound DNA were isolated with specific antiserum and analyzed by SDS/polyacrylamide gel electrophoresis. Using a set of 26 duplex probes, with uniquely positioned aryl azide moieties on the coding or template strands, we found that the 82-kDa subunit interacted primarily with the core region of the promoter, whereas the 70-kDa subunit interacted with the downstream region. Nucleotide substitutions in the core region that downregulate transcription affected the binding of both subunits: the 82-kDa subunit no longer exhibited specificity for upstream regions of the promoter but also bound to downstream regions, whereas the binding of the 70-kDa subunit was abolished even though the mutations were far upstream of its binding site. These results suggested mechanisms by which the interaction of the 82-kDa subunit with the core sequence directs binding of the 70-kDa subunit to DNA downstream.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chlorarachniophyte algae contain a complex, multi-membraned chloroplast derived from the endosymbiosis of a eukaryotic alga. The vestigial nucleus of the endosymbiont, called the nucleomorph, contains only three small linear chromosomes with a haploid genome size of 380 kb and is the smallest known eukaryotic genome. Nucleotide sequence data from a subtelomeric fragment of chromosome III were analyzed as a preliminary investigation of the coding capacity of this vestigial genome. Several housekeeping genes including U6 small nuclear RNA (snRNA), ribosomal proteins S4 and S13, a core protein of the spliceosome [small nuclear ribonucleoprotein (snRNP) E], and a cip-like protease (clpP) were identified. Expression of these genes was confirmed by combinations of Northern blot analysis, in situ hybridization, immunocytochemistry, and cDNA analysis. The protein-encoding genes are typically eukaryotic in overall structure and their messenger RNAs are polyadenylylated. A novel feature is the abundance of 18-, 19-, or 20-nucleotide introns; the smallest spliceosomal introns known. Two of the genes, U6 and S13, overlap while another two genes, snRNP E and clpP, are cotranscribed in a single mRNA. The overall gene organization is extraordinarily compact, making the nucleomorph a unique model for eukaryotic genomics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oral administration of autoantigens can prevent and partially suppress autoimmune diseases in a number of experimental models, Depending on the dose of antigen fed, this approach appears to involve distinct yet reversible and short-lasting mechanisms (anergy/deletion and suppression) and usually requires repeated feeding of large (suppression) to massive (anergy/deletion) amounts of autoantigens to be effective. Most importantly, this approach is relatively less effective in animals already systemically sensitized to the fed antigen, such as in animals already harboring autoreactive T cells and, thus, presumably also in humans suffering from an autoimmune disorder. We have previously shown that feeding a single dose of minute amounts of antigens conjugated to cholera toxin B subunit (CTB) can effectively suppress delayed-type hypersensitivity reactions in systemically immune animals. We now report that feeding small amounts of myelin basic protein (MBP) conjugated to CTB either before or after disease induction protected rats from experimental autoimmune encephalomyelitis. Such treatment was as effective in suppressing interleukin 2 production and proliferative responses of lymph node cells to MBP as treatment involving repeated feeding with much larger (50- to 100-fold) doses of free MBP. Different from the latter treatment, which led to decreased production of interferon-gamma in lymph nodes, low-dose oral CTB-MBP treatment was associated with increased interferon-gamma production. Most importantly, low-dose oral CTB-MBP treatment greatly reduced the level of leukocyte infiltration into spinal cord tissue compared with treatment with repeated feeding of large doses of MBP. These results suggest that the protection from experimental autoimmune encephalomyelitis achieved by feeding CTB-conjugated myelin autoantigen involves immunomodulating mechanisms that are distinct from those implicated by conventional protocols of oral tolerance induction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ribozymes are polynucleotide molecules with intrinsic catalytic activity, capable of cleaving nucleic acid substrates. Large RNA molecules were synthesized containing a hammerhead ribozyme moiety of 52 nucleotides linked to an inactive leader sequence, for total lengths of either 262 or 1226 nucleotides. Frozen RNAs were irradiated with high energy electrons. Surviving ribozyme activity was determined using the ability of the irradiated ribozymes to cleave a labeled substrate. The amount of intact RNA remaining was determined from the same irradiated samples by scanning the RNA band following denaturing gel electrophoresis. Radiation target analyses of these data revealed a structural target size of 80 kDa and a ribozyme activity target size of 15 kDa for the smaller ribozyme, and 319 kDa and 16 kDa, respectively, for the larger ribozyme. The disparity in target size for activity versus structure indicates that, in contrast to proteins, there is no spread of radiation damage far from the primary site of ionization in RNA molecules. The smaller target size for activity indicates that only primary ionizations occurring in the specific active region are effective. This is similar to the case for oligosaccharides. We concluded that the presence of the ribose sugar in the polymer chain restricts radiation damage to a small region and prevents major energy transfer throughout the molecule. Radiation target analysis should be a useful technique for evaluating local RNA:RNA and RNA:protein interactions in vitro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expression of the epsilon-subunit gene of the acetylcholine receptor (AChR) by myonuclei located at the neuromuscular junction is precisely regulated during development. A key role in this regulation is played by the synaptic portion of the basal lamina, a structure that is also known to contain agrin, a component responsible for the formation of postsynaptic specializations. We tested whether agrin has a function in synaptic AChR gene expression. Synaptic basal lamina from native adult muscle and recombinant agrin bound to various substrates induced in cultured rat myotubes AChR clusters that were colocalized with epsilon-subunit mRNA. Estimation of transcript levels by Northern hybridization analysis of total RNA showed a significant increase when myotubes were grown on substrate impregnated with agrin, but were unchanged when agrin was applied in the medium. The effect was independent of the receptor aggregating activity of the agrin isoform used, and agrin acted, at least in part, at the level of epsilon-subunit gene transcription. These findings are consistent with a role of agrin in the regulation of AChR subunit gene expression at the neuromuscular junction, which would depend on its binding to the synaptic basal lamina.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The TATA box-binding protein (TBP) is required by all three eukaryotic RNA polymerases for correct initiation of transcription of ribosomal, messenger, small nuclear, and transfer RNAs. The cocrystal structure of the C-terminal/core region of human TBP complexed with the TATA element of the adenovirus major late promoter has been determined at 1.9 angstroms resolution. Structural and functional analyses of the protein-DNA complex are presented, with a detailed comparison to our 1.9-angstroms resolution structure of Arabidopsis thaliana TBP2 bound to the same TATA box.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism by which elongation factor G (EF-G) catalyzes the translocation of tRNAs and mRNA on the ribosome is not known. The reaction requires GTP, which is hydrolyzed to GDP. Here we show that EF-G from Escherichia coli lacking the G domain still catalyzed partial translocation in that it promoted the transfer of the 3' end of peptidyl-tRNA to the P site on the 50S ribosomal subunit into a puromycin-reactive state in a slow-turnover reaction. In contrast, it did not bring about translocation on the 30S subunit, since (i) deacylated tRNA was not released from the P site and (ii) the A site remained blocked for aminoacyl-tRNA binding during and after partial translocation. The reaction probably represents the first EF-G-dependent step of translocation that follows the spontaneous formation of the A/P state that is not puromycin-reactive [Moazed, D. & Noller, H. F. (1989) Nature (London) 342, 142-148]. In the complete system--i.e., with intact EF-G and GTP--the 50S phase of translocation is rapidly followed by the 30S phase during which the tRNAs together with the mRNA are shifted on the small ribosomal subunit, and GTP is hydrolyzed. As to the mechanism of EF-G function, the results show that the G domain has an important role, presumably exerted through interactions with other domains of EF-G, in the promotion of translocation on the small ribosomal subunit. The G domain's intramolecular interactions are likely to be modulated by GTP binding and hydrolysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using a crosslinkable probe incorporated into the 3' terminus of nascent transcript, three sites were mapped in Escherichia coli RNA polymerase that are contacted by the RNA in the productive elongation complex. Two of these sites are in the beta subunit and one is in the beta' subunit. During elongation, the transcription complex occasionally undergoes an arrest whereby it can neither extend nor release the RNA transcript. It is demonstrated that in an arrested complex, the three contacts of RNA 3' terminus are lost, while a new beta' subunit contact becomes prominent. Thus, elongation arrest appears to involve the disengagement of the bulk of the active center from the 3' terminus of RNA and the transfer of the terminus into a new protein environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Host protein synthesis is selectively inhibited in vaccinia virus-infected cells. This inhibition has been associated with the production of a group of small, nontranslated, polyadenylylated RNAs (POLADS) produced during the early part of virus infection. The inhibitory function of POLADS is associated with the poly(A) tail of these small RNAs. To determine the origin of the 5'-ends of POLADS, reverse transcription was performed with POLADS isolated from VV-infected cells at 1 hr and 3.5 hr post infection. The cDNAs of these POLADS were cloned into plasmids (pBS or pBluescript II KS +/-), and their nucleotide composition was determined by DNA sequencing. The results of this investigation show the following: There is no specific gene encoding for POLADS. The 5' ends of POLADS may be derived from either viral or cellular RNAs. Any RNA sequence including tRNAs, small nuclear RNAs and 5'ends of mRNAs can become POLADS if they acquire a poly(A) tail at their 3' ends during infection. This nonspecific polyadenylylation found in vaccinia virus-infected cells is probably conducted by vaccinia virus poly(A)+ polymerase. No consensus sequence is found on the 5' ends of POLADS for polyadenylylation. The 5' ends of POLADS have no direct role in their inhibitory activity of protein synthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chimeric genomes of poliovirus (PV) have been constructed in which the cognate internal ribosomal entry site (IRES) element was replaced by genetic elements of hepatitis C virus (HCV). Replacement of PV IRES with nt 9-332 of the genotype Ib HCV genome, a sequence comprising all but the first eight residues of the 5' nontranslated region (5'NTR) of HCV, resulted in a lethal phenotype. Addition of 366 nt of the HCV core-encoding sequence downstream of the HCV 5'NTR yielded a viable PV/HCV chimera, which expressed a stable, small-plaque phenotype. This chimeric genome encoded a truncated HCV core protein that was fused to the N terminus of the PV polyprotein via an engineered cleavage site for PV proteinase 3CPpro. Manipulation of the HCV core-encoding sequence of this viable chimera by deletion and frameshift yielded results suggesting that the 5'-proximal sequences of the HCV open reading frame were essential for viability of the chimera and that the N-terminal basic region of the HCV core protein is required for efficient replication of the chimeric virus. These data suggest that the bona fide HCV IRES includes genetic information mapping to the 5'NTR and sequences of the HCV open reading frame. PV chimeras replicating under translational control of genetic elements of HCV can serve to study HCV IRES function in vivo and to search for anti-HCV chemotherapeutic agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While studies of the regulation of gene expression have generally concerned qualitative changes in the selection or the level of expression of a gene, much of the regulation that occurs within a cell involves the continuous subtle optimization of the levels of proteins used in macromolecular complexes. An example is the biosynthesis of the ribosome, in which equimolar amounts of nearly 80 ribosomal proteins must be supplied by the cytoplasm to the nucleolus. We have found that the transcript of one of the ribosomal protein genes of Saccharomyces cerevisiae, RPL32, participates in such fine tuning. Sequences from exon I of the RPL32 transcript interact with nucleotides from the intron to form a structure that binds L32 to regulate splicing. In the spliced transcript, the same sequences interact with nucleotides from exon II to form a structure that binds L32 to regulate translation, thus providing two levels of autoregulation. We now show, by using a sensitive cocultivation assay, that these RNA structures and their interaction with L32 play a role in the fitness of the cell. The change of a single nucleotide within the 5' leader of the RPL32 transcript, which abolishes the site for L32 binding, leads to detectably slower growth and to eventual loss of the mutant strain from the culture. Experiments designed to assess independently the regulation of splicing and the regulation of translation are presented. These observations demonstrate that, in evolutionary terms, subtle regulatory compensations can be critical. The change in structure of an RNA, due to alteration of just one noncoding nucleotide, can spell the difference between biological success and failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A protein complex involved in apolipoprotein B (apoB) RNA editing, referred to as AUX240 (auxiliary factor containing p240), has been identified through the production of monoclonal antibodies against in vitro assembled 27S editosomes. The 240-kDa protein antigen of AUX240 colocalized with editosome complexes on immunoblots of native gels. Immunoadsorbed extracts were impaired in their ability to assemble editosomes beyond early intermediates and in their ability to edit apoB RNA efficiently. Supplementation of adsorbed extract with AUX240 restored both editosome assembly and editing activities. Several proteins, in addition to p240, ranging in molecular mass from 150 to 45 kDa coimmunopurify as AUX240 under stringent wash conditions. The activity of the catalytic subunit of the editosome APOBEC-1 and mooring sequence RNA binding proteins of 66 and 44 kDa could not be demonstrated in AUX240. The data suggest that p240 and associated proteins constitute an auxiliary factor required for efficient apoB RNA editing. We propose that the role of AUX240 may be regulatory and involve mediation or stabilization of interactions between APOBEC-1 subunits and editing site recognition proteins leading the assembly of the rat liver C/U editosome.