193 resultados para Single-stranded-dna
Resumo:
We report single-molecule measurements on the folding and unfolding conformational equilibrium distributions and dynamics of a disulfide crosslinked version of the two-stranded coiled coil from GCN4. The peptide has a fluorescent donor and acceptor at the N termini of its two chains and a Cys disulfide near its C terminus. Thus, folding brings the two N termini of the two chains close together, resulting in an enhancement of fluorescent resonant energy transfer. End-to-end distance distributions have thus been characterized under conditions where the peptide is nearly fully folded (0 M urea), unfolded (7.4 M urea), and in dynamic exchange between folded and unfolded states (3.0 M urea). The distributions have been compared for the peptide freely diffusing in solution and deposited onto aminopropyl silanized glass. As the urea concentration is increased, the mean end-to-end distance shifts to longer distances both in free solution and on the modified surface. The widths of these distributions indicate that the molecules are undergoing millisecond conformational fluctuations. Under all three conditions, these fluctuations gave nonexponential correlations on 1- to 100-ms time scale. A component of the correlation decay that was sensitive to the concentration of urea corresponded to that measured by bulk relaxation kinetics. The trajectories provided effective intramolecular diffusion coefficients as a function of the end-to-end distances for the folded and unfolded states. Single-molecule folding studies provide information concerning the distributions of conformational states in the folded, unfolded, and dynamically interconverting states.
Resumo:
M2 is a double-stranded RNA (dsRNA) element occurring in the hypovirulent isolate Rhs 1A1 of the plant pathogenic basidiomycete Rhizoctonia solani. Rhs 1A1 originated as a sector of the virulent field isolate Rhs 1AP, which contains no detectable amount of the M2 dsRNA. The complete sequence (3,570 bp) of the M2 dsRNA has been determined. A 6.9-kbp segment of total DNA from either Rhs 1A1 or Rhs 1AP hybridizes with an M2-specific cDNA probe. The sequences of M2 dsRNA and of PCR products generated from Rhs 1A1 total DNA were found to be identical. Thus this report describes a fungal host containing full-length DNA copies of a dsRNA element. A major portion of the M2 dsRNA is located in the cytoplasm, whereas a smaller amount is found in mitochondria. Based on either the universal or the mitochondrial genetic code of filamentous fungi, one strand of M2 encodes a putative protein of 754 amino acids. The resulting polypeptide has all four motifs of a dsRNA viral RNA-dependent RNA polymerase (RDRP) and is phylogenetically related to the RDRP of a mitochondrial dsRNA associated with hypovirulence in strain NB631 of Cryphonectria parasitica, incitant of chestnut blight. This polypeptide also has significant sequence similarity with two domains of a pentafunctional polypeptide, which catalyzes the five central steps of the shikimate pathway in yeast and filamentous fungi.
Resumo:
To determine human Ig heavy chain variable region (VH) gene segment organization on individual homologous chromosomes, an efficient approach has been developed. Single spermatozoa were used as subjects for the study. Upon sperm lysis, VH regions in each sperm were randomly sheared into fragments by the random Brownian force. The fragments were separated from each other by aliquoting the lysate into a certain number of tubes. The gene segments in the VH1 and VH4 families in each tube were identified by denaturing gradient gel electrophoresis after PCR amplification. The polymorphic VH sequences were used to determine the parental origins of the analyzed sperm. VH segment organization in the parental haplotypes was determined by aligning the overlapping fragments from the spermatozoa with the corresponding haplotypes. Based on this comparison between the resulting haplotype maps and the composite map reported previously, the VH region on chromosome 14 could be subdivided into four portions. The numbers and compositions of the VH gene segments differ considerably among the maps in two portions, but are highly conserved in the other two. The data also indicate that the VH region on chromosome 15 may contain a large duplicated block with copy number varying among haplotypes. The approach used in the present study may be used to construct high-resolution haplotype maps without molecular cloning.
Resumo:
The Escherichia coli protein DbpA is unique in its subclass of DEAD box RNA helicases, because it possesses ATPase-specific activity toward the peptidyl transferase center in 23S rRNA. Although its remarkable ATPase activity had been well defined toward various substrates, its RNA helicase activity remained to be characterized. Herein, we show by using biochemical assays and atomic force microscopy that DbpA exhibits ATP-stimulated unwinding activity of RNA duplex regardless of its primary sequence. This work presents an attempt to investigate the action of DEAD box proteins by a single-molecule visualization methodology. Our atomic force microscopy images enabled us to observe directly the unwinding reaction of a DEAD box helicase on long stretches of double-stranded RNA. Specifically, we could differentiate between the binding of DbpA to RNA in the absence of ATP and the formation of a Y-shaped intermediate after its progression through double-stranded RNA in the presence of ATP. Recent studies have questioned the designation of DbpA, in particular, and DEAD box proteins in general as RNA helicases. However, accumulated evidence and the results reported herein suggest that these proteins are indeed helicases that resemble in many aspects the DNA helicases.
Resumo:
The nucleocapsid protein (NC) of HIV type 1 is a nucleic acid chaperone that facilitates the rearrangement of nucleic acids into conformations containing the maximum number of complementary base pairs. We use an optical tweezers instrument to stretch single DNA molecules from the helix to coil state at room temperature in the presence of NC and a mutant form (SSHS NC) that lacks the two zinc finger structures present in NC. Although both NC and SSHS NC facilitate annealing of complementary strands through electrostatic attraction, only NC destabilizes the helical form of DNA and reduces the cooperativity of the helix-coil transition. In particular, we find that the helix-coil transition free energy at room temperature is significantly reduced in the presence of NC. Thus, upon NC binding, it is likely that thermodynamic fluctuations cause continuous melting and reannealing of base pairs so that DNA strands are able to rapidly sample configurations to find the lowest energy state. The reduced cooperativity allows these fluctuations to occur in the middle of complex double-stranded structures. The reduced stability and cooperativity, coupled with the electrostatic attraction generated by the high charge density of NC, is responsible for the nucleic acid chaperone activity of this protein.
Resumo:
Most eukaryotic telomeres contain a repeating motif with stretches of guanine residues that form a 3′-terminal overhang extending beyond the telomeric duplex region. The telomeric repeat of hypotrichous ciliates, d(T4G4), forms a 16-nucleotide 3′-overhang. Such sequences can adopt parallel-stranded as well as antiparallel-stranded quadruplex conformations in vitro. Although it has been proposed that guanine-quadruplex conformations may have important cellular roles including telomere function, recombination, and transcription, evidence for the existence of this DNA structure in vivo has been elusive to date. We have generated high-affinity single-chain antibody fragment (scFv) probes for the guanine-quadruplex formed by the Stylonychia telomeric repeat, by ribosome display from the Human Combinatorial Antibody Library. Of the scFvs selected, one (Sty3) had an affinity of Kd = 125 pM for the parallel-stranded guanine-quadruplex and could discriminate with at least 1,000-fold specificity between parallel or antiparallel quadruplex conformations formed by the same sequence motif. A second scFv (Sty49) bound both the parallel and antiparallel quadruplex with similar (Kd = 3–5 nM) affinity. Indirect immunofluorescence studies show that Sty49 reacts specifically with the macronucleus but not the micronucleus of Stylonychia lemnae. The replication band, the region where replication and telomere elongation take place, was also not stained, suggesting that the guanine-quadruplex is resolved during replication. Our results provide experimental evidence that the telomeres of Stylonychia macronuclei adopt in vivo a guanine-quadruplex structure, indicating that this structure may have an important role for telomere functioning.
Resumo:
The replication of double-stranded plasmids containing a single adduct was analyzed in vivo by means of a sequence heterology that marks the two DNA strands. The single adduct was located within the sequence heterology, making it possible to distinguish trans-lesion synthesis (TLS) events from damage avoidance events in which replication did not proceed through the lesion. When the SOS system of the host bacteria is not induced, the C8-guanine adduct formed by the carcinogen N-2-acetylaminofluorene (AAF) yields less than 1% of TLS events, showing that replication does not readily proceed through the lesion. In contrast, the deacetylated adduct N-(deoxyguanosin-8-yl)-2-aminofluorene yields approximately 70% of TLS events under both SOS-induced and uninduced conditions. These results for TLS in vivo are in good agreement with the observation that AAF blocks DNA replication in vitro, whereas aminofluorene does so only weakly. Induction of the SOS response causes an increase in TLS events through the AAF adduct (approximately 13%). The increase in TLS is accompanied by a proportional increase in the frequency of AAF-induced frameshift mutations. However, the polymerase frameshift error rate per TLS event was essentially constant throughout the SOS response. In an SOS-induced delta umuD/C strain, both US events and mutagenesis are totally abolished even though there is no decrease in plasmid survival. Error-free replication evidently proceeds efficiently by means of the damage avoidance pathway. We conclude that SOS mutagenesis results from increased TLS rather than from an increased frameshift error rate of the polymerase.
Resumo:
A human cDNA encoding a protein homologous to the Escherichia coli DNA topoisomerase I subfamily of enzymes has been identified through cloning and sequencing. Expressing the cloned human cDNA in yeast (delta)top1 cells lacking endogenous DNA topoisomerase I yielded an activity in cell extracts that specifically reduces the number of supercoils in a highly negatively supercoiled DNA. On the basis of these results, the human gene containing the cDNA sequence has been denoted TOP3, and the protein it encodes has been denoted DNA topoisomerase III. Screening of a panel of human-rodent somatic hybrids and fluorescence in situ hybridization of cloned TOP3 genomic DNA to metaphase chromosomes indicate that human TOP3 is a single-copy gene located at chromosome 17p11.2-12.
Resumo:
Specific DNA binding to the core consensus site GAGAGAG has been shown with an 82-residue peptide (residues 310-391) taken from the Drosophila transcription factor GAGA. Using a series of deletion mutants, it was demonstrated that the minimal domain required for specific binding (residues 310-372) includes a single zinc finger of the Cys2-His2 family and a stretch of basic amino acids located on the N-terminal end of the zinc finger. In gel retardation assays, the specific binding seen with either the peptide or the whole protein is zinc dependent and corresponds to a dissociation constant of approximately 5 x 10(-9) M for the purified peptide. It has previously been thought that a single zinc finger of the Cys2-His2 family is incapable of specific, high-affinity binding to DNA. The combination of an N-terminal basic region with a single Cys2-His2 zinc finger in the GAGA protein can thus be viewed as a novel DNA binding domain. This raises the possibility that other proteins carrying only one Cys2-His2 finger are also capable of high-affinity specific binding to DNA.
Resumo:
A capillary electrophoresis method has been developed to study DNA-protein complexes by mobility-shift assay. This method is at least 100 times more sensitive than conventional gel mobility-shift procedures. Key features of the technique include the use of a neutral coated capillary, a small amount of linear polymer in the separation medium, and use of covalently dye-labeled DNA probes that can be detected with a commercially available laser-induced fluorescence monitor. The capillary method provides quantitative data in runs requiring < 20 min, from which dissociation constants are readily determined. As a test case we studied interactions of a developmentally important sea urchin embryo transcription factor, SpP3A2. As little as 2-10 x 10(6) molecules of specific SpP3A2-oligonucleotide complex were reproducibly detected, using recombinant SpP3A2, crude nuclear extract, egg lysates, and even a single sea urchin egg lysed within the capillary column.
Resumo:
Bacteriophage T7 DNA polymerase efficiently incorporates a chain-terminating dideoxynucleotide into DNA, in contrast to the DNA polymerases from Escherichia coli and Thermus aquaticus. The molecular basis for this difference has been determined by constructing active site hybrids of these polymerases. A single hydroxyl group on the polypeptide chain is critical for selectivity. Replacing tyrosine-526 of T7 DNA polymerase with phenylalanine increases discrimination against the four dideoxynucleotides by > 2000-fold, while replacing the phenylalanine at the homologous position in E. coli DNA polymerase I (position 762) or T. aquaticus DNA polymerase (position 667) with tyrosine decreases discrimination against the four dideoxynucleotides 250- to 8000-fold. These mutations allow the engineering of new DNA polymerases with enhanced properties for use in DNA sequence analysis.
Resumo:
We have examined the capacity of calf thymus DNA polymerases alpha, beta, delta, and epsilon to perform in vitro translesion synthesis on a substrate containing a single d(GpG)-cisplatin adduct placed on codon 13 of the human HRAS gene. We found that DNA synthesis catalyzed by DNA polymerases alpha, delta, and epsilon was blocked at the base preceding the lesion. Addition of proliferating cell nuclear antigen to DNA polymerase delta and replication protein A to DNA polymerase alpha did not restore their capacity to elongate past the adduct. On the other hand, DNA polymerase beta efficiently bypassed the cisplatin adduct. Furthermore, we observed that DNA polymerase beta was the only polymerase capable of primer extension of a 3'-OH located opposite the base preceding the lesion. Likewise, DNA polymerase beta was able to elongate the arrested replication products of the other three DNA polymerases, thus showing its capacity to successfully compete with polymerases alpha, delta, and epsilon in the stalled replication complex. Our data suggest (i) a possible mechanism enabling DNA polymerase beta to bypass a d(GpG)-cisplatin adduct in vitro and (ii) a role for this enzyme in processing DNA damage in vivo.
Resumo:
Inordinate expansion and hypermethylation of the fragile X DNA triplet repeat, (GGC)n.(GCC)n, are correlated with the ability of the individual G- and C-rich single strands to form hairpin structures. Two-dimensional NMR and gel electrophoresis studies show that both the G- and C-rich single strands form hairpins under physiological conditions. This propensity of hairpin formation is more pronounced for the C-rich strand than for the G-rich strand. This observation suggests that the C-rich strand is more likely to form hairpin or "slippage" structure and show asymmetric strand expansion during replication. NMR data also show that the hairpins formed by the C-rich strands fold in such a way that the cytosine at the CpG step of the stem is C.C paired. The presence of a C.C mismatch at the CpG site generates local flexibility, thereby providing analogs of the transition to the methyltransferase. In other words, the hairpins of the C-rich strand act as better substrates for the human methyltransferase than the Watson-Crick duplex or the G-rich strand. Therefore, hairpin formation could account for the specific methylation of the CpG island in the fragile X repeat that occurs during inactivation of the FMR1 gene during the onset of the disease.