213 resultados para Protéine Tyrosine Kinase 7


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chromosomal rearrangements involving band 12p13 are found in a wide variety of human leukemias but are particularly common in childhood acute lymphoblastic leukemia. The genes involved in these rearrangements, however, have not been identified. We now report the cloning of a t(12;21) translocation breakpoint involving 12p13 and 21q22 in two cases of childhood pre-B acute lymphoblastic leukemia, in which t(12;21) rearrangements were not initially apparent. The consequence of the translocation is fusion of the helix-loop-helix domain of TEL, an ETS-like putative transcription factor, to the DNA-binding and transactivation domains of the transcription factor AML1. These data show that TEL, previously shown to be fused to the platelet-derived growth factor receptor beta in chronic myelomonocytic leukemia, can be implicated in the pathogenesis of leukemia through its fusion to either a receptor tyrosine kinase or a transcription factor. The TEL-AML1 fusion also indicates that translocations affecting the AML1 gene can be associated with lymphoid, as well as myeloid, malignancy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Like other cell-surface receptors with intrinsic or associated protein-tyrosine kinase activity, the T-cell receptor complex undergoes a number of modifications, including tyrosine phosphorylation steps, after ligand binding but before transmitting a signal. The requirement for these modifications introduces a temporal lag between ligand binding and receptor signaling. A model for the T-cell receptor is proposed in which this feature greatly enhances the receptor's ability to discriminate between a foreign antigen and self-antigens with only moderately lower affinity. The proposed scheme is a form of kinetic proofreading, known to be essential for the fidelity of protein and DNA synthesis. A variant of this scheme is also described in which a requirement for formation of large aggregates may lead to a further enhancement of the specificity of T-cell activation. Through these mechanisms, ligands of different affinity potentially may elicit qualitatively different signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several lines of evidence have suggested that ganglioside GM1 stimulates neuronal sprouting and enhances the action of nerve growth factor (NGF), but its precise mechanism is yet to be elucidated. We report here that GM1 directly and tightly associates with Trk, the high-affinity tyrosine kinase-type receptor for NGF, and strongly enhances neurite outgrowth and neurofilament expression in rat PC12 cells elicited by a low dose of NGF that alone is insufficient to induce neuronal differentiation. The potentiation of NGF activity by GM1 appears to involve tyrosine-autophosphorylation of Trk, which contains intrinsic tyrosine kinase activity that has been localized to the cytoplasmic domain. In the presence of GM1 in culture medium, there is a > 3-fold increase in NGF-induced autophosphorylation of Trk as compared with NGF alone. We also found that GM1 could directly enhance NGF-activated autophosphorylation of immunoprecipitated Trk in vitro. Monosialoganglioside GM1, but not polysialogangliosides, is tightly associated with immunoprecipitated Trk. Furthermore, such tight association of GM1 with Trk appears to be specific, since a similar association was not observed with other growth factor receptors, such as low-affinity NGF receptor (p75NGR) and epidermal growth factor receptor (EGFR). Thus, these results strongly suggest that GM1 functions as a specific endogenous activator of NGF receptor function, and these enhanced effects appear to be due, at least in part, to tight association of GM1 with Trk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human T-cell leukemia virus type I (HTLV-I) gives rise to a neurologic disease known as HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Although the pathogenesis of the disease is unknown, the presence of a remarkably high frequency of Tax-specific, cytotoxic CD8 T cells may suggest a role of these cells in the development of HAM/TSP. Antigen-mediated signaling in a CD8 T-cell clone specific for the Tax(11-19) peptide of HTLV-I was studied using analog peptides substituted in their T-cell receptor contact residues defined by x-ray crystallographic data of the Tax(11-19) peptide in the groove of HLA-A2. CD8 T-cell stimulation with the wild-type peptide antigen led to activation of p56lck kinase activity, interleukin 2 secretion, cytotoxicity, and clonal expansion. A Tax analog peptide with an alanine substitution of the T-cell receptor contact residue tyrosine-15 induced T-cell-mediated cytolysis without activation of interleukin 2 secretion or proliferation. Induction of p56lck kinase activity correlated with T-cell-mediated cytotoxicity, whereas interleukin 2 secretion correlated with [3H]thymidine incorporation and proliferation. Moreover, Tax peptide analogs that activated the tyrosine kinase activity of p56lck could induce unresponsiveness to secondary stimulation with the wild-type peptide. These observations show that a single amino acid substitution in a T-cell receptor contact residue of Tax can differentially signal CD8 T cells and further demonstrate that primary activation has functional consequences for the secondary response of at least some Tax-specific CD8 T cells to HTLV-I-infected target cells.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Protein kinase C (PKC) isoforms, α, βI, and γ of cPKC subgroup, δ and ɛ of nPKC subgroup, and ζ of aPKC subgroup, were tyrosine phosphorylated in COS-7 cells in response to H2O2. These isoforms isolated from the H2O2-treated cells showed enhanced enzyme activity to various extents. The enzymes, PKC α and δ, recovered from the cells were independent of lipid cofactors for their catalytic activity. Analysis of mutated molecules of PKC δ showed that tyrosine residues, which are conserved in the catalytic domain of the PKC family, are critical for PKC activation induced by H2O2. These results suggest that PKC isoforms can be activated through tyrosine phosphorylation in a manner unrelated to receptor-coupled hydrolysis of inositol phospholipids.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The G protein-coupled m1 and m3 muscarinic acetylcholine receptors increase tyrosine phosphorylation of several proteins, including the focal adhesion-associated proteins paxillin and focal adhesion kinase (FAK), but the mechanism is not understood. Activation of integrins during adhesion of cells to extracellular matrix, or stimulation of quiescent cell monolayers with G protein-coupled receptor ligands including bradykinin, bombesin, endothelin, vasopressin, and lysophosphatidic acid, also induces tyrosine phosphorylation of paxillin and FAK and formation of focal adhesions. These effects are generally independent of protein kinase C but are inhibited by agents that prevent cytoskeletal assembly or block activation of the small molecular weight G protein Rho. This report demonstrates that tyrosine phosphorylation of paxillin and FAK elicited by stimulation of muscarinic m3 receptors with the acetylcholine analog carbachol is inhibited by soluble peptides containing the arginine–glycine–aspartate motif (the recognition site for integrins found in adhesion proteins such as fibronectin) but is unaffected by peptides containing the inactive sequence arginine–glycine–glutamate. Tyrosine phosphorylation elicited by carbachol, but not by cell adhesion to fibronectin, is reduced by the protein kinase C inhibitor GF 109203X. The response to carbachol is dependent on the presence of fibronectin. Moreover, immunofluorescence studies show that carbachol treatment induces formation of stress fibers and focal adhesions. These results suggest that muscarinic receptor stimulation activates integrins via a protein kinase C-dependent mechanism. The activated integrins transmit a signal into the cell’s interior leading to tyrosine phosphorylation of paxillin and FAK. This represents a novel mechanism for regulation of tyrosine phosphorylation by muscarinic receptors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Exposure of cells to protein tyrosine phosphatase (PTP) inhibitors causes an increase in the phosphotyrosine content of many cellular proteins. However, the level at which the primary signaling event is affected is still unclear. We show that Jaks are activated by tyrosine phosphorylation in cells that are briefly exposed to the PTP inhibitor pervanadate (PV), resulting in tyrosine phosphorylation and functional activation of Stat6 (in addition to other Stats). Mutant cell lines that lack Jak1 activity fail to support PV-mediated [or interleukin 4 (IL-4)-dependent] activation of Stat6 but can be rescued by complementation with functional Jak1. The docking sites for both Jak1 and Stat6 reside in the cytoplasmic domain of the IL-4 receptor α-chain (IL-4Rα). The glioblastoma-derived cell lines T98G, GRE, and M007, which do not express the IL-4Rα chain, fail to support Stat6 activation in response to either IL-4 or PV. Complementation of T98G cells with the IL-4Rα restores both PV-mediated and IL-4-dependent Stat6 activation. Murine L929 cells, which do not express the γ common chain of the IL-4 receptor, support PV-mediated but not IL-4-dependent Stat6 activation. Thus, Stat6 activation by PV is an IL-4Rα-mediated, Jak1-dependent event that is independent of receptor dimerization. We propose that receptor-associated constitutive PTP activity functions to down-regulate persistent, receptor-linked kinase activity. Inhibition or deletion of PTP activity results in constitutive activation of cytokine signaling pathways.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We established stable COS-7 cell lines overexpressing recombinant PTPMEG and an inactive mutant form in which the active site cysteine is mutated to serine (PTPMEGCS). We found that both endogenous and recombinant enzyme were primarily located in the membrane and cytoskeletal fractions of COS-7 cells. Endogenous PTPMEG accounts for only 1/3000th of the total tyrosine phosphatase activity in COS-7 cells and transfected cells expressed 2- to 7-fold higher levels of the enzyme. These levels of overexpression did not result in detectable changes in either total tyrosine phosphatase activity or the state of protein tyrosine phosphorylation as determined by immunoblotting of cell homogenates with anti-phosphotyrosine antibodies. Despite the low levels of activity for PTPMEG, we found that overexpressing cells grew slower and reached confluence at a lower density than vector transfected cells. Surprisingly, PTPMEGCS-transfected cells also reach confluence at a lower density than vector-transfected cells, although they grow to higher density than PTPMEG-transfected cells. Both constructs inhibited the ability of COS-7 cells to form colonies in soft agar, with the native PTPMEG having a greater effect (30-fold) than PTPMEGCS (10-fold). These results indicate that in COS-7 cells both PTPMEG and PTPMEGCS inhibit cell proliferation, reduce the saturation density, and block the ability of these cells to grow without adhering to a solid matrix.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Members of the Src family of nonreceptor protein tyrosine kinases (PTKs) have been implicated in the regulation of cellular excitability and synaptic plasticity. We have investigated the role of these PTKs in in vitro models of epileptiform activity. Spontaneous epileptiform discharges were induced in vitro in the CA3 region of rat hippocampal slices by superfusion with the potassium channel blocker 4-aminopyridine in Mg2+-free medium. In hippocampal slices treated in this fashion, Src kinase activity was increased and the frequency of epileptiform discharges could be greatly reduced by inhibitor of the Src family of PTKs, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2), but not by the inactive structural analog 4-amino-7-phenylpyrazol[3,4-d]pyrimidine (PP3). 4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine also reduced epileptiform activity induced by either 4-aminopyridine or Mg2+-free medium alone. These observations demonstrate a role for Src family PTKs in the pathophysiology of epilepsy and suggest potential therapeutic targets for antiepileptic therapy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Regulation of nonspecific cation channels often underlies neuronal bursting and other prolonged changes in neuronal activity. In bag cell neurons of Aplysia, it recently has been suggested that an intracellular messenger-induced increase in the activity of a nonspecific cation channel may underlie the onset of a 30-min period of spontaneous action potentials referred to as the “afterdischarge.” In patch clamp studies of the channel, we show that the open probability of the channel can be increased by an average of 10.7-fold by application of ATP to the cytoplasmic side of patches. Duration histograms indicate that the increase is primarily a result of a reduction in the duration and percentage of channel closures described by the slowest time constant. The increase in open probability was not observed using 5′-adenylylimidodiphosphate, a nonhydrolyzable ATP analog, and was blocked in the presence of H7 or the more specific calcium/phospholipid-dependent protein kinase C (PKC) inhibitor peptide(19–36). Because the increase in activity observed in response to ATP occurred without application of protein kinase, our results indicate that a kinase endogenous to excised patches mediates the effect. The effect of ATP could be reversed by exogenously applied protein phosphatase 1 or by a microcystin-sensitive phosphatase also endogenous to excised patches. These results, together with work demonstrating the presence of a protein tyrosine phosphatase in these patches, suggest that the cation channel is part of a regulatory complex including at least three enzymes. This complex may act as a molecular switch to activate the cation channel and, thereby, trigger the afterdischarge.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cytokines are critically important for the growth and development of a variety of cells. Janus kinases (JAKs) associate with cytokine receptors and are essential for transmitting downstream cytokine signals. However, the regulation of the enzymatic activity of the JAKs is not well understood. Here, we investigated the role of tyrosine phosphorylation of JAK3 in regulating its kinase activity by analyzing mutations of tyrosine residues within the putative activation loop of the kinase domain. Specifically, tyrosine residues 980 and 981 of JAK3 were mutated to phenylalanine individually or doubly. We found that JAK3 is autophosphorylated on multiple sites including Y980 and Y981. Compared with the activity of wild-type (WT) JAK3, mutant Y980F demonstrated markedly decreased kinase activity, and optimal phosphorylation of JAK3 on other sites was dependent on Y980 phosphorylation. The mutant Y980F also exhibited reduced phosphorylation of its substrates, γc and STAT5A. In contrast, mutant Y981F had greatly increased kinase activity, whereas the double mutant, YY980/981FF, had intermediate activity. These results indicate that Y980 positively regulates JAK3 kinase activity whereas Y981 negatively regulates JAK3 kinase activity. These observations in JAK3 are similar to the findings in the kinase that is closely related to the JAK family, ZAP-70; mutations of tyrosine residues within the putative activation loop of ZAP-70 also have opposing actions. Thus, it will be important to determine whether this feature of regulation is unique to JAK3 or if it is also a feature of other JAKs. Given the importance of JAKs and particularly JAK3, it will be critical to fully dissect the positive and negative regulatory function of these and other tyrosine residues in the control of kinase activity and hence cytokine signaling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fibroblast growth factor receptor 3 (FGFR3) mutations are frequently involved in human developmental disorders and cancer. Activation of FGFR3, through mutation or ligand stimulation, results in autophosphorylation of multiple tyrosine residues within the intracellular domain. To assess the importance of the six conserved tyrosine residues within the intracellular domain of FGFR3 for signaling, derivatives were constructed containing an N-terminal myristylation signal for plasma membrane localization and a point mutation (K650E) that confers constitutive kinase activation. A derivative containing all conserved tyrosine residues stimulates cellular transformation and activation of several FGFR3 signaling pathways. Substitution of all nonactivation loop tyrosine residues with phenylalanine rendered this FGFR3 construct inactive, despite the presence of the activating K650E mutation. Addition of a single tyrosine residue, Y724, restored its ability to stimulate cellular transformation, phosphatidylinositol 3-kinase activation, and phosphorylation of Shp2, MAPK, Stat1, and Stat3. These results demonstrate a critical role for Y724 in the activation of multiple signaling pathways by constitutively activated mutants of FGFR3.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

rho-like GTP binding proteins play an essential role in regulating cell growth and actin polymerization. These molecular switches are positively regulated by guanine nucleotide exchange factors (GEFs) that promote the exchange of GDP for GTP. Using the interaction-trap assay to identify candidate proteins that bind the cytoplasmic region of the LAR transmembrane protein tyrosine phosphatase (PT-Pase), we isolated a cDNA encoding a 2861-amino acid protein termed Trio that contains three enzyme domains: two functional GEF domains and a protein serine/threonine kinase (PSK) domain. One of the Trio GEF domains (Trio GEF-D1) has rac-specific GEF activity, while the other Trio GEF domain (Trio GEF-D2) has rho-specific activity. The C-terminal PSK domain is adjacent to an Ig-like domain and is most similar to calcium/calmodulin-dependent kinases, such as smooth muscle myosin light chain kinase which similarly contains associated Ig-like domains. Near the N terminus, Trio has four spectrin-like repeats that may play a role in intracellular targeting. Northern blot analysis indicates that Trio has a broad tissue distribution. Trio appears to be phosphorylated only on serine residues, suggesting that Trio is not a LAR substrate, but rather that it forms a complex with LAR. As the LAR PTPase localizes to the ends of focal adhesions, we propose that LAR and the Trio GEF/PSK may orchestrate cell-matrix and cytoskeletal rearrangements necessary for cell migration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

mSOS, a guanine nucleotide exchange factor, is a positive regulator of Ras. Fyn tyrosine protein kinase is a potential mediator in T-cell antigen receptor signal transduction in subsets of T cells. We investigated the functional and physical interaction between mSOS and Fyn in T-cell hybridoma cells. Stimulation of the T-cell antigen receptor induced the activation of guanine nucleotide exchange activity in mSOS immunoprecipitates. Overexpression of Fyn mutants with an activated kinase mutation and with a Src homology 2 deletion mutation resulted in a stimulation and suppression of the mSOS activity, respectively. The complex formations of Fyn-Shc, Shc-Grb2, and Grb2-mSOS were detected in the activated Fyn-transformed cells, whereas the SH2 deletion mutant of Fyn failed to form a complex with mSOS. Moreover, tyrosine phosphorylation of Shc was induced by the overexpression of the activated Fyn. These findings support the idea that Fyn activates the activity of mSOS bound to Grb2 through tyrosine phosphorylation of Shc. Unlike the current prevailing model, Fyn-induced activation of Ras might involve the stimulation of the catalytic guanine nucleotide exchange activity of mSOS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The delta isoform of protein kinase C is phosphorylated on tyrosine in response to antigen activation of the high-affinity receptor for immunoglobulin E. While protein kinase C-delta associates with and phosphorylates this receptor, immunoprecipitation of the receptor revealed that little, if any, tyrosine-phosphorylated protein kinase C-delta is receptor associated. In vitro kinase assays with immunoprecipitated tyrosine-phosphorylated protein kinase C-delta showed that the modified enzyme had diminished activity toward the receptor gamma-chain peptide as a substrate but not toward histones or myelin basic protein peptide. We propose a model in which the tyrosine phosphorylation of protein kinase C-delta regulates the kinase specificity toward a given substrate. This may represent a general mechanism by which in vivo protein kinase activities are regulated in response to external stimuli.