232 resultados para Ovocytes de Xenopus
Resumo:
We used digital fluorescence microscopy to make real-time observations of anaphase chromosome movement and changes in microtubule organization in spindles assembled in Xenopus egg extracts. Anaphase chromosome movement in these extracts resembled that seen in living vertebrate cells. During anaphase chromosomes moved toward the spindle poles (anaphase A) and the majority reached positions very close to the spindle poles. The average rate of chromosome to pole movement (2.4 microns/min) was similar to earlier measurements of poleward microtubule flux during metaphase. An increase in pole-to-pole distance (anaphase B) occurred in some spindles. The polyploidy of the spindles we examined allowed us to observe two novel features of mitosis. First, during anaphase, multiple microtubule organizing centers migrated 40 microns or more away from the spindle poles. Second, in telophase, decondensing chromosomes often moved rapidly (7-23 microns/min) away from the spindle poles toward the centers of these asters. This telophase chromosome movement suggests that the surface of decondensing chromosomes, and by extension those of intact nuclei, bear minus-end-directed microtubule motors. Preventing the inactivation of Cdc2/cyclin B complexes by adding nondegradable cyclin B allowed anaphase A to occur at normal velocities, but reduced the ejection of asters from the spindles, blocked chromosome decondensation, and inhibited telophase chromosome movement. In the presence of nondegradable cyclin B, chromosome movement to the poles converted bipolar spindles into pairs of independent monopolar spindles, demonstrating the role of sister chromatid linkage in maintaining spindle bipolarity.
Resumo:
Two different approaches were used to examine the in vivo role of polyamines in causing inward rectification of potassium channels. In two-microelectrode voltage-clamp experiments, 24-hr incubation of Xenopus oocytes injected with 50 nl of difluoromethylornithine (5 mM) and methylglyoxal bis(guanylhydrazone) (1 mM) caused an approximate doubling of expressed Kir2.1 currents and relieved rectification by causing an approximately +10-mV shift of the voltage at which currents are half-maximally inhibited. Second, a putrescine auxotrophic, ornithine decarboxylase-deficient Chinese hamster ovary (O-CHO) cell line was stably transfected with the cDNA encoding Kir2.3. Withdrawal of putrescine from the medium led to rapid (1-day) loss of the instantaneous phase of Kir2.3 channel activation, consistent with a decline of intracellular putrescine levels. Four days after putrescine withdrawal, macroscopic conductance, assessed using an 86Rb+ flux assay, was approximately doubled, and this corresponded to a +30-mV shift of V1/2 of rectification. With increasing time after putrescine withdrawal, there was an increase in the slowest phase of current activation, corresponding to an increase in the spermine-to-spermidine ratio over time. These results provide direct evidence for a role of each polyamine in induction of rectification, and they further demonstrate that in vivo modulation of rectification is possible by manipulation of polyamine levels using genetic and pharmacological approaches.
Resumo:
A study was made of the effects of 5-hydroxytryptamine (5HT) on homomeric neuronal nicotinic receptors (nAcChoR) expressed in Xenopus oocytes after injection of cDNA encoding the wild-type chicken alpha(7) subunit. Acetylcholine (AcCho) elicited large currents (IAcCho) that were reduced by 5HT in a reversible and dose-dependent manner, with a half-inhibitory concentration (IC50) of 56 microM and a Hill coefficient (nH) of 1.2. The inhibition of IAcCho by 5HT was noncompetitive and voltage independent, a behavior incompatible with a channel blockade mechanism. 5HT alone did not elicit membrane currents in oocytes injected with the wild-type alpha(7) subunit cDNA. In contrast, 5HT elicited membrane currents (I5HT) in oocytes injected with cDNA encoding an alpha(7) mutant subunit with a threonine-for-leucine-247 substitution (L247T alpha(7)). I5HT was inhibited by the potent nicotinic receptor blockers alpha-bungarotoxin (100 nM) and methyllycaconitine (1 microM). Furthermore, the characteristics of I5HT, including its voltage dependence, were similar to those of IAcCho. The 5HT dose-I5HT response gave an apparent dissociation constant EC50 of 23.5 microM and a Hill coefficient nH of 1.7, which were not modified by the presence of AcCho. Similarly, the apparent affinity of L247T alpha(7) for AcCho as well as its cooperativity were not influenced by 5HT, indicating a lack of mutual interactions between 5HT and AcCho. These results show that 5HT is a potent noncompetitive antagonist of neuronal alpha(7) nAcChoR, but it becomes a noncompetitive agonist following mutation of the highly conserved leucine residue 247 located in the channel domain M2.
Resumo:
The mitogen-activated protein kinase (MAPK) cascade is a highly conserved series of three protein kinases implicated in diverse biological processes. Here we demonstrate that the cascade arrangement has unexpected consequences for the dynamics of MAPK signaling. We solved the rate equations for the cascade numerically and found that MAPK is predicted to behave like a highly cooperative enzyme, even though it was not assumed that any of the enzymes in the cascade were regulated cooperatively. Measurements of MAPK activation in Xenopus oocyte extracts confirmed this prediction. The stimulus/response curve of the MAPK was found to be as steep as that of a cooperative enzyme with a Hill coefficient of 4-5, well in excess of that of the classical allosteric protein hemoglobin. The shape of the MAPK stimulus/ response curve may make the cascade particularly appropriate for mediating processes like mitogenesis, cell fate induction, and oocyte maturation, where a cell switches from one discrete state to another.
Resumo:
Somatic sensation requires the conversion of physical stimuli into the depolarization of distal nerve endings. A single cRNA derived from sensory neurons renders Xenopus laevis oocytes mechanosensitive and is found to encode a P2Y1 purinergic receptor. P2Y1 mRNA is concentrated in large-fiber dorsal root ganglion neurons. In contrast, P2X3 mRNA is localized to small-fiber sensory neurons and produces less mechanosensitivity in oocytes. The frequency of touch-induced action potentials from frog sensory nerve fibers is increased by the presence of P2 receptor agonists at the peripheral nerve ending and is decreased by the presence of P2 antagonists. P2X-selective agents do not have these effects. The release of ATP into the extracellular space and the activation of peripheral P2Y1 receptors appear to participate in the generation of sensory action potentials by light touch.
Resumo:
Abnormal mesoderm movement, leading to defects in axial organization, is observed in mouse and Xenopus laevis embryos deprived of platelet-derived growth factor (PDGF) AA signaling. However, neither the cellular response to PDGF nor the signaling pathways involved are understood. Herein we describe an in vitro assay to examine the direct effect of PDGF AA on aggregates of Xenopus embryonic mesoderm cells. We find that PDGF AA stimulates aggregates to spread on fibronectin. This behavior is similar to that of migrating mesoderm cells in vivo that spread and form lamellipodia and filipodia on contact with fibronectin-rich extracellular matrix. We go on to show two lines of evidence that implicate phosphatidylinositol 3-kinase (PI3K) as an important component of PDGF-induced mesoderm cell spreading. (i) The fungal metabolite wortmannin, which inhibits signaling by PI3K, blocks mesoderm spreading in response to PDGF AA. (ii) Activation of a series of receptors with specific tyrosine-to-phenylalanine mutations revealed PDGF-induced spreading of mesoderm cells depends on PI3K but not on other signaling molecules that interact with PDGF receptors including phospholipase C gamma, Ras GTPase-activating protein, and phosphotyrosine phosphatase SHPTP2. These results indicate that a PDGF signal, medicated by PI3K, can facilitate embryonic mesoderm cell spreading on fibronectin. We propose that PDGF, produced by the ectoderm, influences the adhesive properties of the adjacent mesoderm cells during gastrulation.
Resumo:
Cytoplasmic polyadenylylation is an evolutionarily conserved mechanism involved in the translational activation of a set of maternal messenger RNAs (mRNAs) during early development. In this report, we show by interspecies injections that Xenopus and mouse use the same regulatory sequences to control cytoplasmic poly(A) addition during meiotic maturation. Similarly, Xenopus and Drosophila embryos exploit functionally conserved signals to regulate polyadenylylation during early post-fertilization development. These experiments demonstrate that the sequence elements that govern cytoplasmic polyadenylylation, and hence one form of translational activation, function across species. We infer that the requisite regulatory sequence elements, and likely the trans-acting components with which they interact, have been conserved since the divergence of vertebrates and arthropods.
Resumo:
We have cloned and expressed a Ca(2+)-activated K+ channel beta-subunit from human brain. The open reading frame encodes a 191-amino acid protein possessing significant homology to a previously described subunit cloned from bovine muscle. The gene for this subunit is located on chromosome 5 at band q34 (hslo-beta). There is no evidence for alternative RNA splicing of this gene product. hslo-beta mRNA is abundantly expressed in smooth muscle, but expression levels are low in most other tissues, including brain. Brain subregions in which beta-subunit mRNA expression is relatively high are the hippocampus and corpus callosum. The coexpression of hslo-beta mRNA together with hslo-alpha subunits in either Xenopus oocytes or stably transfected HEK 293 cells give rise to Ca(2+)-activated potassium currents with a much increased calcium and/or voltage sensitivity. These data indicate that the beta-subunit shows a tissue distribution different to that of the alpha-subunit, and in many tissues there may be no association of alpha-subunits with beta-subunits. These beta-subunits can play a functional role in the regulation of neuronal excitability by tuning the Ca2+ and/or the voltage dependence of alpha-subunits.
Resumo:
Lithium, one of the most effective drugs for the treatment of bipolar (manic-depressive) disorder, also has dramatic effects on morphogenesis in the early development of numerous organisms. How lithium exerts these diverse effects is unclear, but the favored hypothesis is that lithium acts through inhibition of inositol monophosphatase (IMPase). We show here that complete inhibition of IMPase has no effect on the morphogenesis of Xenopus embryos and present a different hypothesis to explain the broad action of lithium. Our results suggest that lithium acts through inhibition of glycogen synthase kinase-3 beta (GSK-3 beta), which regulates cell fate determination in diverse organisms including Dictyostelium, Drosophila, and Xenopus. Lithium potently inhibits GSK-3 beta activity (Ki = 2 mM), but is not a general inhibitor of other protein kinases. In support of this hypothesis, lithium treatment phenocopies loss of GSK-3 beta function in Xenopus and Dictyostelium. These observations help explain the effect of lithium on cell-fate determination and could provide insights into the pathogenesis and treatment of bipolar disorder.
Resumo:
Mg2+ ions block N-methyl-D-aspartate (NMDA) channels by entering the pore from either the extracellular or the cytoplasmic side of the membrane in a voltage-dependent manner. We have used these two different block phenomena to probe the structure of the subunits forming NMDA channels. We have made several amino acid substitutions downstream of the Q/R/N site in the TMII region of both NR1 and NR2A subunits. Mutant NR1 subunits were coexpressed with wild-type NR2A subunits and vice versa in Xenopus oocytes. We found that individually mutating the first two amino acid residues downstream to the Q/R/N site affects mostly the block by external Mg2+. Mutations of residues five to seven positions downstream of the Q/R/N site do not influence the external Mg2+ block, but clearly influence the block by internal Mg2+. These data add support to the hypothesis that there are two separate binding sites for external and internal Mg2+ block. They also indicate that the C-terminal end of TMII contributes to the inner vestibule of the pore of NMDA channels and thus provide additional evidence that TMII forms a loop that reemerges toward the cytoplasmic side of the membrane.
Resumo:
Amide derivatives of fatty acids were recently isolated from cerebrospinal fluid of sleep-deprived animals and found to induce sleep in rats. To determine which brain receptors might be sensitive to these novel neuromodulators, we tested them on a range of receptors expressed in Xenopus oocytes. cis-9,10-Octadecenamide (ODA) markedly potentiated the action of 5-hydroxytryptamine (5-HT) on 5-HT2A and 5-HT2C receptors, but this action was not shared by related compounds such as oleic acid and trans-9,10-octacenamide. ODA was active at concentrations as low as 1 nM. The saturated analog, octadecanamide, inhibited rather than potentiated 5-HT2C responses. ODA had either no effect or only weak effects on other receptors, including muscarinic cholinergic, metabotropic glutamate, GABA(A), N-methyl-D-asparate, or alpha-amino-3-hydroxy-5-methyl-4-isoxozolepropionic acid receptors. Modulation of 5-HT2 receptors by ODA and related lipids may represent a novel mechanism for regulation of receptors that activate G proteins and thereby play a role in alertness, sleep, and mood as well as disturbances of these states.
Resumo:
KAT1 is a voltage-dependent inward rectifying K+ channel cloned from the higher plant Arabidopsis thaliana [Anderson, J. A., Huprikar, S. S., Kochian, L. V., Lucas, W. J. & Gaber, R. F. (1992) Proc. Natl. Acad. Sci. USA 89, 3736-3740]. It is related to the Shaker superfamily of K+ channels characterized by six transmembrane spanning domains (S1-S6) and a putative pore-forming region between S5 and S6 (H5). The 115 region between Pro-247 and Pro-271 in KAT1 contains 14 additional amino acids when compared with Shaker [Aldrich, R. W. (1993) Nature (London) 362, 107-108]. We studied various point mutations introduced into H5 to determine whether voltage-dependent plant and animal K+ channels share similar pore structures. Through heterologous expression in Xenopus oocytes and voltage-clamp analysis combined with phenotypic analysis involving a potassium transport-defective Saccharomyces cerevisiae strain, we investigated the selectivity filter of the mutants and their susceptibility toward inhibition by cesium and calcium ions. With respect to electrophysiological properties, KAT1 mutants segregated into three groups: (i) wild-type-like channels, (ii) channels modified in selectivity and Cs+ or Ca2+ sensitivity, and (iii) a group that was additionally affected in its voltage dependence. Despite the additional 14 amino acids in H5, this motif in KAT1 is also involved in the formation of the ion-conducting pore because amino acid substitutions at Leu-251, Thr-256, Thr-259, and Thr-260 resulted in functional channels with modified ionic selectivity and inhibition. Creation of Ca2+ sensitivity and an increased susceptibility to Cs+ block through mutations within the narrow pore might indicate that both blockers move deeply into the channel. Furthermore, mutations close to the rim of the pore affecting the half-activation potential (U1/2) indicate that amino acids within the pore either interact with the voltage sensor or ion permeation feeds back on gating.
Resumo:
To identify determinants that form nonapeptide hormone binding domains of the white sucker Catostomus commersoni [Arg8]vasotocin receptor, chimeric constructs encoding parts of the vasotocin receptor and parts of the isotocin receptor have been analyzed by [(3,5-3H)Tyr2, Arg8]vasotocin binding to membranes of human embryonic kidney cells previously transfected with the different cDNA constructs and by functional expression studies in Xenopus laevis oocytes injected with mutant cRNAs. The results indicate that the N terminus and a region spanning the second extracellular loop and its flanking transmembrane segments, which contains a number of amino acid residues that are conserved throughout the nonapeptide receptor family, contribute to the affinity of the receptor for its ligand. Nonapeptide selectivity, however, is mainly defined by transmembrane region VI and the third extracellular loop. These results are complemented by a molecular model of the vasotocin receptor obtained by aligning its sequence with those of other G-protein coupled receptors as well as that of bacteriorhodopsin. The model indicates that amino acid residues of transmembrane regions II-VII that are located close to the extracellular surface also contribute to the binding of vasotocin.
Resumo:
Mos is an upstream activator of mitogen-activated protein kinase (MAPK) and, in mouse oocytes, is responsible for metaphase II arrest. This activity has been likened to its function in Xenopus oocytes as a component of cytostatic factor. Thus, Mos-deficient female mice (MOS-/-) are less fertile and oocytes derived from these animals fail to arrest at metaphase II and undergo parthenogenetic activation [Colledge, W. H., Carlton, M. B. L., Udy, C. B. & Evans, M. J. (1994) Nature (London) 370, 65-68 and Hashimoto, N., Watanabe, N., Furuta. Y., Tamemoto, B., Sagata, N., Yokoyama, M., Okazaki, K., Nagayoshi, M., Takeda, N., Ikawa, Y. & Aizawa, S. (1994) Nature (London) 370, 68-71]. Here we show that maturing MOS-/- oocytes fail to activate MAPK throughout meiosis, while p34cdc2 kinase activity is normal until late in metaphase II when it decreases prematurely. Phenotypically, the first meiotic division of MOS-/- oocytes frequently resembles mitotic cleavage or produces an abnormally large polar body. In these oocytes, the spindle shape is altered and the spindle fails to translocate to the cortex, leading to the establishment of an altered cleavage plane. Moreover, the first polar body persists instead of degrading and sometimes undergoes an additional cleavage, thereby providing conditions for parthenogenesis. These studies identify meiotic spindle formation and programmed degradation of the first polar body as new and important roles for the Mos/MAPK pathway.
Resumo:
The in vivo effectiveness of ribozymes strongly depends on the correct choice of the vector molecule. High levels of expression, stability, active conformation, and correct cellular localization are the most important features for a ribozyme vector. We have exploited the utilization of the U1 small nuclear RNA (snRNA) as a vector for specifically targeting a ribozyme into the nucleus. The Rev pre-mRNA of human immunodeficiency virus type 1 was chosen as target for testing the activity of the Ul-ribozyme. The catalytic core of the hammerhead motif, plus the recognition sequences, substituted the stem-loop III of the U1 snRNA. The resulting construct displays efficient cleavage activity in vitro. In addition, in the in vivo system of Xenopus laevis oocytes, the Ul-chimeric ribozyme accumulates in large amounts in the nucleus and produces a considerable reduction of Rev pre-mRNA levels. The Rev-specific ribozyme was also inserted in a derivative of the Ul snRNA mutated in the region of pairing with the 5' splice site, such as to match it with the suboptimal splice junction of the Rev precursor. This construct shows more efficient reduction of Rev pre-mRNA in vivo than the wild-type U1 vector.