187 resultados para Integral membrane proteins


Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is mounting evidence for the organization and compartmentation of signaling molecules at the plasma membrane. We find that hormone-sensitive adenylyl cyclase activity is enriched in a subset of regulatory G protein-containing fractions of the plasma membrane. These subfractions resemble, in low buoyant density, structures of the plasma membrane termed caveolae. Immunofluorescence experiments revealed a punctate pattern of G protein α and β subunits, consistent with concentration of these proteins at distinct sites on the plasma membrane. Partial coincidence of localization of G protein α subunits with caveolin (a marker for caveolae) was observed by double immunofluorescence. Results of immunogold electron microscopy suggest that some G protein is associated with invaginated caveolae, but most of the protein resides in irregular structures of the plasma membrane that could not be identified morphologically. Because regulated adenylyl cyclase activity is present in low-density subfractions of plasma membrane from a cell type (S49 lymphoma) that does not express caveolin, this protein is not required for organization of the adenylyl cyclase system. The data suggest that hormone-sensitive adenylyl cyclase systems are localized in a specialized subdomain of the plasma membrane that may optimize the efficiency and fidelity of signal transduction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The pore-forming toxin streptolysin O (SLO) can be used to reversibly permeabilize adherent and nonadherent cells, allowing delivery of molecules with up to 100 kDa mass to the cytosol. Using FITC-labeled albumin, 105–106 molecules were estimated to be entrapped per cell. Repair of toxin lesions depended on Ca2+-calmodulin and on intact microtubules, but was not sensitive to actin disruption or to inhibition of protein synthesis. Resealed cells were viable for days and retained the capacity to endocytose and to proliferate. The active domains of large clostridial toxins were introduced into three different cell lines. The domains were derived from Clostridium difficile B-toxin and Clostridium sordelli lethal toxin, which glycosylate small G-proteins, and from Clostridium botulinum C2 toxin, which ADP-ribosylates actin. After delivery with SLO, all three toxins disrupted the actin cytoskeleton to cause rounding up of the cells. Glucosylation assays demonstrated that G-proteins Rho and Ras were retained in the permeabilized cells and were modified by the respective toxins. Inactivation of these G-proteins resulted in reduced stimulus-dependent granule secretion, whereas ADP-ribosylation of actin by the C. botulinum C2-toxin resulted in enhanced secretion in cells. The presented method for introducing proteins into living cells should find multifaceted application in cell biology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plasma membrane vesicles from red beet (Beta vulgaris L.) storage tissue contain two prominent major intrinsic protein species of 31 and 27 kD (X. Qi, C.Y Tai, B.P. Wasserman [1995] Plant Physiol 108: 387–392). In this study affinity-purified antibodies were used to investigate their localization and biochemical properties. Both plasma membrane intrinsic protein (PMIP) subgroups partitioned identically in sucrose gradients; however, each exhibited distinct properties when probed for multimer formation, and by limited proteolysis. The tendency of each PMIP species to form disulfide-linked aggregates was studied by inclusion of various sulfhydryl agents during tissue homogenization and vesicle isolation. In the absence of dithiothreitol and sulfhydryl reagents, PMIP27 yielded a mixture of monomeric and aggregated species. In contrast, generation of a monomeric species of PMIP31 required the addition of dithiothreitol, iodoacetic acid, or N-ethylmaleimide. Mixed disulfide-linked heterodimers between the PMIP31 and PMIP27 subgroups were not detected. Based on vectorial proteolysis of right-side-out vesicles with trypsin and hydropathy analysis of the predicted amino acid sequence derived from the gene encoding PMIP27, a topological model for a PMIP27 was established. Two exposed tryptic cleavage sites were identified from proteolysis of PMIP27, and each was distinct from the single exposed site previously identified in surface loop C of a PMIP31. Although the PMIP31 and PMIP27 species both contain integral proteins that appear to occur within a single vesicle population, these results demonstrate that each PMIP subgroup responds differently to perturbations of the membrane.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Eubacterial transducers are transmembrane, methyl-accepting proteins central to chemotaxis systems and share common structural features. We identified a large family of transducer proteins in the Archaeon Halobacterium salinarium using a site-specific multiple antigenic peptide antibody raised against 23 amino acids, representing the highest homology region of eubacterial transducers. This immunological observation was confirmed by isolating 13 methyl-accepting taxis genes using a 27-mer oligonucleotide probe, corresponding to conserved regions between the eubacterial and first halobacterial phototaxis transducer gene htrI. On the basis of the comparison of the predicted structural domains of these transducers, we propose that at least three distinct subfamilies of transducers exist in the Archaeon H. salinarium: (i) a eubacterial chemotaxis transducer type with two hydrophobic membrane-spanning segments connecting sizable domains in the periplasm and cytoplasm; (ii) a cytoplasmic domain and two or more hydrophobic transmembrane segments without periplasmic domains; and (iii) a cytoplasmic domain without hydrophobic transmembrane segments. We fractionated the halobacterial cell lysate into soluble and membrane fractions and localized different halobacterial methyl-accepting taxis proteins in both fractions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The closely related multidrug efflux pumps QacA and QacB, from the bacterial pathogen Staphylococcus aureus, both confer resistance to various toxic organic cations but differ in that QacB mediates lower levels of resistance to divalent cations. Cloning and nucleotide sequencing of the qacB gene revealed that qacB differs from qacA by only seven nucleotide substitutions. Random hydroxylamine mutagenesis of qacB was undertaken, selecting for variants that conferred increased resistance to divalent cations. Both QacA and the QacB mutants capable of conferring resistance to divalent cations contain an acidic residue at either amino acid 322 or 323, whereas QacB contains uncharged residues in these positions. Site-directed mutagenesis of qacA confirmed the importance of an acidic residue within this region of QacA in conferring resistance to divalent cations. Membrane topological analysis using alkaline phosphatase and beta-galactosidase fusions indicated that the QacA protein contains 14 transmembrane segments. Thus, QacA represents the first membrane transport protein shown to contain 14 transmembrane segments, and confirms that the major facilitator superfamily contains a family of proteins with 14 transmembrane segments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A strategy based on the gene trap was developed to prescreen mouse embryonic stem cells for insertional mutations in genes encoding secreted and membrane-spanning proteins. The "secretory trap" relies on capturing the N-terminal signal sequence of an endogenous gene to generate an active beta-galactosidase fusion protein. Insertions were found in a cadherin gene, an unc6-related laminin (netrin) gene, the sek receptor tyrosine kinase gene, and genes encoding two receptor-linked protein-tyrosine phosphatases, LAR and PTP kappa. Analysis of homozygous mice carrying insertions in LAR and PTP kappa showed that both genes were effectively disrupted, but neither was essential for normal embryonic development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An approach was developed for the isolation and characterization of soybean plasma membrane-associated proteins by immunoscreening of a cDNA expression library. An antiserum was raised against purified plasma membrane vesicles. In a differential screening of approximately 500,000 plaque-forming units with the anti-(plasma membrane) serum and DNA probes derived from highly abundant clones isolated in a preliminary screening, 261 clones were selected from approximately 1,200 antiserum-positive plaques. These clones were classified into 40 groups by hybridization analysis and 5'- and 3'-terminal sequencing. By searching nucleic acid and protein sequence data bases, 11 groups of cDNAs were identified, among which valosin-containing protein (VCP), clathrin heavy chain, phospholipase C, and S-adenosylmethionine:delta 24-sterol-C-methyltransferase have not to date been cloned from plants. The remaining 29 groups did not match any current data base entries and may, therefore, represent additional or yet uncharacterized genes. A full-length cDNA encoding the soybean VCP was sequenced. The high level of amino acid identity with vertebrate VCP and yeast CDC48 protein indicates that the soybean protein is a plant homolog of vertebrate VCP and yeast CDC48 protein.