247 resultados para Ca2 Channels


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two different approaches were used to examine the in vivo role of polyamines in causing inward rectification of potassium channels. In two-microelectrode voltage-clamp experiments, 24-hr incubation of Xenopus oocytes injected with 50 nl of difluoromethylornithine (5 mM) and methylglyoxal bis(guanylhydrazone) (1 mM) caused an approximate doubling of expressed Kir2.1 currents and relieved rectification by causing an approximately +10-mV shift of the voltage at which currents are half-maximally inhibited. Second, a putrescine auxotrophic, ornithine decarboxylase-deficient Chinese hamster ovary (O-CHO) cell line was stably transfected with the cDNA encoding Kir2.3. Withdrawal of putrescine from the medium led to rapid (1-day) loss of the instantaneous phase of Kir2.3 channel activation, consistent with a decline of intracellular putrescine levels. Four days after putrescine withdrawal, macroscopic conductance, assessed using an 86Rb+ flux assay, was approximately doubled, and this corresponded to a +30-mV shift of V1/2 of rectification. With increasing time after putrescine withdrawal, there was an increase in the slowest phase of current activation, corresponding to an increase in the spermine-to-spermidine ratio over time. These results provide direct evidence for a role of each polyamine in induction of rectification, and they further demonstrate that in vivo modulation of rectification is possible by manipulation of polyamine levels using genetic and pharmacological approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exocytotic membrane fusion and secretion are promoted by the concerted action of GTP and Ca2+, although the precise site(s) of action in the process are not presently known. However, the calcium-dependent membrane fusion reaction driven by synexin (annexin VII) is an in vitro model for this process, which we have now found to be further activated by GTP. The mechanism of fusion activation depends on the unique ability of synexin to bind and hydrolyze GTP in a calcium-dependent manner, both in vitro and in vivo in streptolysin O-permeabilized chromaffin cells. The required [Ca2+] for GTP binding by synexin is in the range of 50-200 microM, which is known to occur at exocytotic sites in chromaffin cells, neurons, and other cell types. Previous immunolocalization studies place synexin at exocytotic sites in chromaffin cells, and we conclude that synexin is an atypical G protein that may be responsible for both detecting and mediating the Ca2+/GTP signal for exocytotic membrane fusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In endothelial cells, stretch-activated cation channels have been proposed to act as mechanosensors for changes in hemodynamic forces. We have identified a novel mechanosensitive pressure-activated channel in intact endothelium from rat aorta and mesenteric artery. The 18-pS cation channel responded with a multifold increase in channel activity when positive pressure was applied to the luminal cell surface with the patch pipette and inactivated at negative pipette pressure. Channel permeability ratio for K+, Na+, and Ca2+ ions was 1:0.98:0.23. Ca2+ influx through the channel was sufficient to activate a neighboring Ca2(+)-dependent K+ channel. Hemodynamic forces are chronically disturbed in arterial hypertension. Endothelial cell dysfunction has been implicated in the pathogenesis of arterial hypertension. In two comparative studies, density of the pressure-activated channel was found to be significantly higher in spontaneously hypertensive rats and renovascular hypertensive rats compared with their respective normotensive controls. Channel activity presumably leads to mechanosensitive Ca2+ influx and induces cell hyperpolarization by K+ channel activity. Both Ca2+ influx and hyperpolarization are known to induce a vasodilatory endothelial response by stimulating endothelial nitric oxide (NO) production. Up-regulation of channel density in hypertension could, therefore, represent a counterregulatory mechanism of vascular endothelium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is increasing evidence for an additional acute, nongenomic action of the mineralocorticoid hormone aldosterone on renal epithelial cells, leading to a two-step model of mineralocorticoid action on electrolyte excretion. We investigated the acute effect of aldosterone on intracellular free Ca2+ and on intracellular pH in an aldosterone-sensitive Madin-Darby canine kidney cell clone. Within seconds of application of aldosterone, but not of the glucocorticoid hydrocortisone, there was a 3-fold sustained increase of intracellular Ca2+ at a half-maximal concentration of 10(-10) mol/liter. Omission of extracellular Ca2+ prevented this hormone response. In the presence of extracellular Ca2+ aldosterone led to intracellular alkalinization. The Na+/H+ exchange inhibitor ethyl-isopropanol-amiloride (EIPA) prevented the aldosterone-induced alkalinization but not the aldosterone-induced increase of intracellular Ca2+. Omission of extracellular Ca2+ also prevented aldosterone-induced alkalinization. Instead, aldosterone led to a Zn(2+)-dependent intracellular acidification in the presence of EIPA, indicative of an increase of plasma membrane proton conductance. Under control conditions, Zn2+ prevented the aldosterone-induced alkalinization completely. We conclude that aldosterone stimulated net-entry of Ca2+ from the extracellular compartment and a plasma membrane H+ conductance as prerequisites for the stimulation of plasma membrane Na+/H+ exchange which in turn modulates K+ channel acitivity. It is probable that the aldosterone-sensitive H+ conductance maintains Na+/H+ exchange activity by providing an acidic environment in the vicinity of the exchanger. Thus, genomic action of aldosterone determines cellular transport equipment, whereas the nongenomic action regulates transporter activity that requires responses within seconds or minutes, which explains the rapid effects on electrolyte excretion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurotransmitter is released when Ca2+ triggers the fusion of synaptic vesicles with the plasmalemma. To study factors that regulate Ca2+ concentration at the presynaptic active zones of hair cells, we used laser-scanning confocal microscopy with the fluorescent Ca2+ indicator fluo 3. The experimental results were compared with the predictions of a model of presynaptic Ca2+ concentration in which Ca2+ enters a cell through a point source, diffuses from the entry site, and binds to fixed or mobile Ca2+ buffers. The observed time course and magnitude of fluorescence changes under a variety of conditions were well fit when the model included mobile molecules as the only Ca2+ buffer. The results confirm the localized entry of Ca2+ underlying neurotransmitter release and suggest that Ca2+ is cleared from an active zone almost exclusively by mobile buffer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the properties of r-eag voltage-activated potassium channels in a stably transfected human embryonic kidney cell line. It was found that r-eag channels are rapidly and reversibly inhibited by a rise in intracellular calcium from 30 to 300 nM. The inhibition does not appear to depend on the activity of calcium-dependent kinases and phosphatases. The effect of calcium on r-eag channel activity was studied in inside-out membrane patches. Calcium inhibited r-eag channel activity with a mean IC50 of 67 nM. Activation of muscarinic receptors, generating calcium oscillations in the transfected cells, induced a synchronous inhibition of r-eag mediated outward currents. This shows that calcium can mediate r-eag current inhibition following muscarinic receptor activation. The data indicate that r-eag channels are calcium-inhibitable voltage-activated potassium channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classical conditioning of Aplysia's siphon-withdrawal reflex is thought to be due to a presynaptic mechanism-activity-dependent presynaptic facilitation of sensorimotor connections. Recent experiments with sensorimotor synapses in dissociated cell culture, however, provide an alternative cellular mechanism for classical conditioning-Hebbian long-term potentiation (LTP) of sensorimotor connections. Induction of Hebbian LTP of these connections is mediated by activation of N-methyl-D-aspartate-related receptors and requires the postsynaptic elevation of intracellular Ca2+. To determine whether the enhancement of sensorimotor synapses during classical conditioning in Aplysia-like LTP of sensorimotor synapses in culture-also depends upon the elevation of postsynaptic Ca2+, we carried out experiments involving the cellular analog of classical conditioning of siphon withdrawal. We examined changes in the strength of monosynaptic siphon sensorimotor connections in the abdominal ganglion of Aplysia following paired presentations of sensory neuron activation and tail nerve shock. This training regimen resulted in significant enhancement of the monosynaptic sensorimotor excitatory postsynaptic potential, as compared with the sensorimotor excitatory postsynaptic potential in preparations that received only test stimulation. Infusing the motor neuron with 1,2-bis(2-aminophenoxy)ethane-N,N-N',N'-tetraacetic acid, a specific chelator of intracellular Ca2+, prior to paired stimulation training blocked this synaptic enhancement. Our results implicate a postsynaptic, possibly Hebbian, mechanism in classical conditioning in Aplysia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ca2+ and its ubiquitous intracellular receptor calmodulin (CaM) are required in the nervous system, among a host of cellular responses, for the modulation of several important enzymes and ion channels involved in synaptic efficacy and neuronal plasticity. Here, we report that CaM can be replaced by the neuronal calcium sensor NCS-1 both in vitro and in vivo. NCS-1 is a calcium binding protein with two Ca(2+)-binding domains that shares only 21% of homology with CaM. We observe that NCS-1 directly activates two Ca2+/CaM-dependent enzymes (3':5'-cyclic nucleotide phosphodiesterase and protein phosphatase calcineurin). Co-activation of nitric oxide synthase by NCS-1 and CaM results in a higher activity than with CaM alone. Moreover, NCS-1 is coexpressed with calcineurin and nitric oxide synthase in several neuron populations. Finally, injections of NCS-1 into calmodulin-defective cam1 Paramecium partially restore wildtype behavioral responses. With this highly purified preparation of NCS-1, we have obtained crystals suitable for crystallographic structure studies. NCS-1, despite its very different structure, distribution, and Ca(2+)-binding affinity as compared with CaM, can substitute for or potentiate CaM functions. Therefore, NCS-1 represents a novel protein capable of mediating multiple Ca(2+)-signaling pathways in the nervous system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N-Methyl-D-aspartate (NMDA) receptors are blocked at hyperpolarizing potentials by extracellular Mg ions. Here we present a detailed kinetic analysis of the Mg block in recombinant wild-type and mutant NMDA receptors. We find that the Mg binding site is the same in the wild-type and native hippocampal NMDA receptor channels. In the mutant channels, however, Mg ions bind with a 10-fold lower affinity. On the basis of these results, we propose that the energy well at the Mg binding site in the mutants is shallow and the binding is unstable because of an increase in the rate of dissociation. We postulate that the dipole formed by the amide group of asparagine 614 of the epsilon 1 subunit contributes to the structure of the binding site but predict that additional ligands will be involved in coordinating Mg ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltage-gated Na+ channels are the molecular targets of local anesthetics, class I antiarrhythmic drugs, and some anticonvulsants. These chemically diverse drugs inhibit Na+ channels with complex voltage- and frequency-dependent properties that reflect preferential drug binding to open and inactivated channel states. The site-directed mutations F1764A and Y1771A in transmembrane segment IVS6 of type IIA Na+ channel alpha subunits dramatically reduce the affinity of inactivated channels for the local anesthetic etidocaine. In this study, we show that these mutations also greatly reduce the sensitivity of Na+ channels to state-dependent block by the class Ib antiarrhythmic drug lidocaine and the anticonvulsant phenytoin and, to a lesser extent, reduce the sensitivity to block by the class Ia and Ic antiarrhythmic drugs quinidine and flecainide. For lidocaine and phenytoin, which bind preferentially to inactivated Na+ channels, the mutation F1764A reduced the affinity for binding to the inactivated state 24.5-fold and 8.3-fold, respectively, while Y1771A had smaller effects. For quinidine and flecainide, which bind preferentially to the open Na+ channels, the mutations F1764A and Y1771A reduced the affinity for binding to the open state 2- to 3-fold. Thus, F1764 and Y1771 are common molecular determinants of state-dependent binding of diverse drugs including lidocaine, phenytoin, flecainide, and quinidine, suggesting that these drugs interact with a common receptor site. However, the different magnitude of the effects of these mutations on binding of the individual drugs indicates that they interact in an overlapping, but nonidentical, manner with a common receptor site. These results further define the contributions of F1764 and Y1771 to a complex drug receptor site in the pore of Na+ channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mg2+ ions block N-methyl-D-aspartate (NMDA) channels by entering the pore from either the extracellular or the cytoplasmic side of the membrane in a voltage-dependent manner. We have used these two different block phenomena to probe the structure of the subunits forming NMDA channels. We have made several amino acid substitutions downstream of the Q/R/N site in the TMII region of both NR1 and NR2A subunits. Mutant NR1 subunits were coexpressed with wild-type NR2A subunits and vice versa in Xenopus oocytes. We found that individually mutating the first two amino acid residues downstream to the Q/R/N site affects mostly the block by external Mg2+. Mutations of residues five to seven positions downstream of the Q/R/N site do not influence the external Mg2+ block, but clearly influence the block by internal Mg2+. These data add support to the hypothesis that there are two separate binding sites for external and internal Mg2+ block. They also indicate that the C-terminal end of TMII contributes to the inner vestibule of the pore of NMDA channels and thus provide additional evidence that TMII forms a loop that reemerges toward the cytoplasmic side of the membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reestablishment of the resting state after stimulus-coupled elevations of cytosolic-free Ca2+ requires the rapid removal of Ca2+ from the cytosol of plant cells. Here we describe the isolation of two genes, CAX1 and CAX2, from Arabidopsis thaliana that suppress a mutant of Saccharomyces cerevisiae that has a defect in vacuolar Ca2+ accumulation. Both genes encode polypeptides showing sequence similarities to microbial H+/Ca2+ antiporters. Experiments on vacuolar membrane-enriched vesicles isolated from yeast expressing CAX1 or CAX2 demonstrate that these genes encode high efficiency and low efficiency H+/Ca2+ exchangers, respectively. The properties of the CAX1 gene product indicate that it is the high capacity transporter responsible for maintaining low cytosolic-free Ca2+ concentrations in plant cells by catalyzing pH gradient-energized vacuolar Ca2+ accumulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several P2X receptor subunits were recently cloned; of these, one was cloned from the rat vas deferens (P2X1) and another from pheochromocytoma (PC12) cells differentiated with nerve growth factor (P2X2). Peptides corresponding to the C-terminal portions of the predicted receptor proteins (P2X1 391-399 and P2X2 460-472) were used to generate antisera in rabbits. The specificities of antisera were determined by staining human embryonic kidney cells stably transfected with either P2X1 or P2X2 receptors and by absorption controls with the cognate peptides. In the vas deferens and the ileal submucosa, P2X1 immunoreactivity (ir) was restricted to smooth muscle, whereas P2X2-ir was restricted to neurons and their processes. Chromaffin cells of the adrenal medulla and PC12 cells contained both P2X1- and P2X2-ir. P2X1-ir was also found in smooth muscle cells of the bladder, cardiac myocytes, and nerve fibers and terminals in the superficial dorsal horn of the spinal cord. In contrast, P2X2-ir was observed in scattered cells of the anterior pituitary, neurons in the hypothalamic arcuate and paraventricular nuclei, and catecholaminergic neurons in the olfactory bulb, the substantia nigra, ventral tegmental area, and locus coeruleus. A plexus of nerve fibers and terminals in the nucleus of the solitary tract contained P2X2-ir. This staining disappeared after nodose ganglionectomy, consistent with a presynaptic function. The location of the P2X1 subunit in smooth muscle is consistent with its role as a postjunctional receptor in autonomic transmission, while in neurons, these receptors appear in both postsynaptic and presynaptic locations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In tight Na+-absorbing epithelial cells, the fate of Na+ entry through amiloride-sensitive apical membrane Na+ channels is matched to basolateral Na+ extrusion so that cell Na+ concentration and volume remain steady. Control of this process by regulation of apical Na+ channels has been attributed to changes in cytosolic Ca2+ concentration or pH, secondary to changes in cytosolic Na+ concentration, although cytosolic Cl- seems also to be involved. Using mouse mandibular gland duct cells, we now demonstrate that increasing cytosolic Na+ concentration inhibits apical Na+ channels independent of changes in cytosolic Ca2+, pH, or Cl-, and the effect is blocked by GDP-beta-S, pertussis toxin, and antibodies against the alpha-subunits of guanine nucleotide-binding regulatory proteins (Go). In contrast, the inhibitory effect of cytosolic anions is blocked by antibodies to inhibitory guanine nucleotide-binding regulatory proteins (Gi1/Gi2. It thus appears that apical Na+ channels are regulated by Go and Gi proteins, the activities of which are controlled, respectively, by cytosolic Na+ and Cl-.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

KAT1 is a voltage-dependent inward rectifying K+ channel cloned from the higher plant Arabidopsis thaliana [Anderson, J. A., Huprikar, S. S., Kochian, L. V., Lucas, W. J. & Gaber, R. F. (1992) Proc. Natl. Acad. Sci. USA 89, 3736-3740]. It is related to the Shaker superfamily of K+ channels characterized by six transmembrane spanning domains (S1-S6) and a putative pore-forming region between S5 and S6 (H5). The 115 region between Pro-247 and Pro-271 in KAT1 contains 14 additional amino acids when compared with Shaker [Aldrich, R. W. (1993) Nature (London) 362, 107-108]. We studied various point mutations introduced into H5 to determine whether voltage-dependent plant and animal K+ channels share similar pore structures. Through heterologous expression in Xenopus oocytes and voltage-clamp analysis combined with phenotypic analysis involving a potassium transport-defective Saccharomyces cerevisiae strain, we investigated the selectivity filter of the mutants and their susceptibility toward inhibition by cesium and calcium ions. With respect to electrophysiological properties, KAT1 mutants segregated into three groups: (i) wild-type-like channels, (ii) channels modified in selectivity and Cs+ or Ca2+ sensitivity, and (iii) a group that was additionally affected in its voltage dependence. Despite the additional 14 amino acids in H5, this motif in KAT1 is also involved in the formation of the ion-conducting pore because amino acid substitutions at Leu-251, Thr-256, Thr-259, and Thr-260 resulted in functional channels with modified ionic selectivity and inhibition. Creation of Ca2+ sensitivity and an increased susceptibility to Cs+ block through mutations within the narrow pore might indicate that both blockers move deeply into the channel. Furthermore, mutations close to the rim of the pore affecting the half-activation potential (U1/2) indicate that amino acids within the pore either interact with the voltage sensor or ion permeation feeds back on gating.