208 resultados para C-H ACTIVATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cytokines interleukin 2 (IL-2) and IL-15 have similar biological effects on T cells and bind common hematopoietin receptor subunits. Pathways that involve Janus kinases (JAKs) and signal transducers and activators of transcription (STATs) have been shown to be important for hematopoietin receptor signaling. In this study we identify the STAT proteins activated by IL-2 and IL-15 in human T cells. IL-2 and IL-15 rapidly induced the tyrosine phosphorylation of STAT3 and STAT5, and DNA-binding complexes containing STAT3 and STAT5 were rapidly activated by these cytokines in T cells. IL-4 induced tyrosine phosphorylation and activation of STAT3 but not STAT5. JAK1 and JAK3 were tyrosine-phosphorylated in response to IL-2 and IL-15. Hence, the JAK and STAT molecules that are activated in response to IL-2 and IL-15 are similar but differ from those induced by IL-4. These observations identify the STAT proteins activated by IL-2 and IL-15 and therefore define signaling pathways by which these T-cell growth factors may regulate gene transcription.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interleukin 2 receptor (IL-2R) consists of three subunits, the IL-2R alpha, IL-2R beta c, and IL-2R gamma c chains. Two Janus family protein tyrosine kinases (PTKs), Jak1 and Jak3, were shown to associate with IL-2R beta c and IL-2R gamma c, respectively, and their PTK activities are increased after IL-2 stimulation. A Jak3 mutant with truncation of the C-terminal PTK domain lacks its intrinsic kinase activity but can still associate with IL-2R gamma c. In a hematopoietic cell line, F7, that responds to either IL-2 or IL-3, overexpression of this Jak3 mutant results in selective inhibition of the IL-2-induced activation of Jak1/Jak3 PTKs and of cell proliferation. Of the three target nuclear protooncogenes of the IL-2 signaling, c-fos and c-myc genes, but not the bcl-2 gene, were found to be impaired. On the other hand, overexpression of the dominant negative form of the IL-2R gamma c chain, which lacks most of its cytoplasmic domain, in F7 cells resulted in the inhibition of all three protooncogenes. These results provide a further molecular basis for the critical role of Jak3 in IL-2 signaling and also suggest a Jak PTK-independent signaling pathway(s) for the bcl-2 gene induction by IL-2R.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CD28 is a costimulatory receptor found on the surface of most T lymphocytes. Engagement of CD28 induces interleukin 2 (IL-2) production and cell proliferation when combined with an additional signal such as treatment with phorbol ester, an activator of protein kinase C. Recent studies have established that after CD28 ligation, the cytoplasmic domain of CD28 can bind to the 85-kDa subunit of phosphatidylinositol 3-kinase (PI3 kinase). There is a concomitant increase in PI3 lipid kinase activity that may be important in CD28 signaling. Despite the requirement of phorbol 12-myristate 13-acetate (PMA) for effector function, we have found, however, that treatment of Jurkat T cells with the phorbol ester PMA dramatically inhibits (i) the association of PI3 kinase with CD28, (ii) the ability of p85 PI3 kinase to be immunoprecipitated by anti-phosphotyrosine antibodies, and (iii) the induction of PI3 kinase activity after stimulation of the cells with the anti-CD28 monoclonal antibody 9.3. These changes occur within minutes of PMA treatment and are persistent. In addition, we have found that wortmannin, a potent inhibitor of PI3 kinase, does not interfere with the induction of IL-2 after stimulation of Jurkat T cells with anti-CD28 monoclonal antibody and PMA. We conclude that PI3 kinase activity may not be required for CD28-dependent IL-2 production from Jurkat T cells in the presence of PMA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cytokines interleukin (IL) 4 and IL-13 induce many of the same biological responses, including class switching to IgE and induction of major histocompatibility complex class II antigens and CD23 on human B cells. It has recently been shown that IL-4 induces the tyrosine phosphorylation of a 170-kDa protein, a substrate called 4PS, and of the Janus kinase (JAK) family members JAK1 and JAK3. Because IL-13 has many functional effects similar to those of IL-4, we compared the ability of IL-4 and IL-13 to activate these signaling molecules in the human multifactor-dependent cell line TF-1. In this report we demonstrate that both IL-4 and IL-13 induced the tyrosine phosphorylation of 4PS and JAK1. Interestingly, although IL-4 induced the tyrosine phosphorylation of JAK3, we did not detect JAK3 phosphorylation in response to IL-13. These data suggest that IL-4 and IL-13 signal in similar ways via the activation of JAK1 and 4PS. However, our data further indicate that there are significant differences because IL-13 does not activate JAK3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activation of the c-Src tyrosine kinase has been implicated as an important step in the induction of mammary tumors in both mice and humans. To directly assess the effect of mammary gland-specific expression of activated c-Src, we established transgenic mice that carry a constitutively activated form of c-src under transcriptional control of the murine mammary tumor virus long terminal repeat. Female mice derived from several independent transgenic lines lactate poorly as a consequence of an impairment in normal mammary epithelial development. In addition to this lactation defect, female mice frequently develop mammary epithelial hyperplasias, which occasionally progress to frank neoplasias. Taken together, these observations suggest that expression of activated c-Src in the mammary epithelium of transgenic mice is not sufficient for induction of mammary tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phosphorylation-dependent mechanisms regulating activation of the human neutrophil respiratory-burst enzyme, NADPH oxidase, have not been elucidated. We have shown that phosphatidic acid (PA) and diacylglycerol (DG), products of phospholipase activation, synergize to activate NADPH oxidase in a cell-free system. We now report that activation by PA plus DG involves protein kinase activity, unlike other cell-free system activators. NADPH oxidase activation by PA plus DG is reduced approximately 70% by several protein kinase inhibitors [1-(5-isoquinolinesulfonyl)piperazine, staurosporine, GF-109203X]. Similarly, depletion of ATP by dialysis reduces PA plus DG-mediated NADPH oxidase activation by approximately 70%. Addition of ATP, but not a nonhydrolyzable ATP analog, to the dialyzed system restores activation levels to normal. In contrast, these treatments have little effect on NADPH oxidase activation by arachidonic acid or SDS plus DG. PA plus DG induces the phosphorylation of a number of endogenous proteins. Phosphorylation is largely mediated by PA, not DG. A predominant substrate is p47-phox, a phosphoprotein component of NADPH oxidase. Phosphorylation of p47-phox precedes activation of NADPH oxidase and is markedly reduced by the protein kinase inhibitors. In contrast, arachidonic acid alone or SDS plus DG is a poor activator of protein phosphorylation in the cell-free system. Thus, PA induces activation of one or more protein kinases that regulate NADPH oxidase activation in a cell-free system. This cell-free system will be useful for identifying a functionally important PA-activated protein kinase(s) and for dissecting the phosphorylation-dependent mechanisms responsible for NADPH oxidase activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interleukin 12 (IL-12) is an important immunoregulatory cytokine whose receptor is a member of the hematopoietin receptor superfamily. We have recently demonstrated that stimulation of human T and natural killer cells with IL-12 induces tyrosine phosphorylation of the Janus family tyrosine kinase JAK2 and Tyk2, implicating these kinases in the immediate biochemical response to IL-12. Recently, transcription factors known as STATs (signal transducers and activators of transcription) have been shown to be tyrosine phosphorylated and activated in response to a number of cytokines that bind hematopoietin receptors and activate JAK kinases. In this report we demonstrate that IL-12 induces tyrosine phosphorylation of a recently identified STAT family member, STAT4, and show that STAT4 expression is regulated by T-cell activation. Furthermore, we show that IL-12 stimulates formation of a DNA-binding complex that recognizes a DNA sequence previously shown to bind STAT proteins and that this complex contains STAT4. These data, and the recent demonstration of JAK phosphorylation by IL-12, identify a rapid signal-transduction pathway likely to mediate IL-12-induced gene expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coexpression in Xenopus oocytes of the inwardly rectifying guanine nucleotide binding (G)-protein-gated K channel GIRK1 with a myristoylated modification of the (putative) cytosolic C-terminal tail [GIRK1 aa 183-501 fused in-frame to aa 1-15 of p60src and denoted src+ (183-501)] leads to a high degree of inhibition of the inward G-protein-gated K+ current. The nonmyristoylated segment, src- (183-501), is not active. Although some interference with assembly is not precluded, the evidence indicates that the main mechanism of inhibition is interference with functional activation of the channel by G proteins. In part, the tail functions as a blocking particle similar to a "Shaker ball"; it may also function by competing for the available supply of free G beta gamma liberated by hormone activation of a seven-helix receptor. The non-G-protein-gated weak inward rectifier ROMK1 is less effectively inhibited, and a Shaker K channel was not inhibited. Immunological assays show the presence of a high concentration of src+ (183-501) in the plasma membrane and the absence of any membrane forms for the nonmyristoylated segment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A constitutively active fragment of rat MEK kinase 1 (MEKK1) consisting of only its catalytic domain (MEKK-C) expressed in bacteria quantitatively activates recombinant mitogen-activated protein (MAP) kinase/extracellular signal-regulated protein kinase (ERK) kinases 1 and 2 (MEK1 and MEK2) in vitro. Activation of MEK1 by MEKK-C is accompanied by phosphorylation of S218 and S222, which are also phosphorylated by the protein kinases c-Mos and Raf-1. MEKK1 has been implicated in regulation of a parallel but distinct cascade that leads to phosphorylation of N-terminal sites on c-Jun; thus, its role in the MAP kinase pathway has been questioned. However, in addition to its capacity to phosphorylate MEK1 in vitro, MEKK-C interacts with MEK1 in the two-hybrid system, and expression of mouse MEKK1 or MEKK-C in mammalian cells causes constitutive activation of both MEK1 and MEK2. Neither cotransfected nor endogenous ERK2 is highly activated by MEKK1 compared to its stimulation by epidermal growth factor in spite of significant activation of endogenous MEK. Thus, other as yet undefined mechanisms may be involved in determining information flow through the MAP kinase and related pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The promoter of the bean PAL2 gene (encoding phenylalanine ammonia-lyase; EC 4.3.1.5) is a model for studies of tissue-restricted gene expression in plants. Petal epidermis is one of the tissues in which this promoter is activated in tobacco. Previous work suggested that a major factor establishing the pattern of PAL2 expression in tobacco petals is the tissue distribution of a protein closely related to Myb305, which is a Myb-like transcriptional activator from snapdragon. In the present work, we show that Myb305 expression in tobacco leaves causes ectopic activation of the PAL2 promoter. To achieve Myb305 expression in planta, a viral expression vector was used. This approach combines the utility of transient assays with the possibility of direct biochemical detection of the introduced factor and may have wider application for studying the function of plant transcription factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Granzyme B serine protease is found in the granules of activated cytotoxic T cells and in natural and lymphokine-activated killer cells. This protease plays a critical role in the rapid induction of target cell DNA fragmentation. The DNA regulatory elements that are responsible for the specificity of granzyme B gene transcription in activated T-cells reside between nt -148 and +60 (relative to the transcription start point at +1) of the human granzyme B gene promoter. This region contains binding sites for the transcription factors Ikaros, CBF, Ets, and AP-1. Mutational analysis of the human granzyme B promoter reveals that the Ikaros binding site (-143 to -114) and the AP-1/CBF binding site (-103 to -77) are essential for the activation of transcription in phytohemagglutinin-activated peripheral blood lymphocytes, whereas mutation of the Ets binding site does not affect promoter activity in these cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Levels and subcellular distribution of connexin 43 (Cx43), a gap junction protein, were studied in hamster leukocytes before and after activation with endotoxin (lipopolysaccharide, LPS) both in vitro and in vivo. Untreated leukocytes did not express Cx43. However, Cx43 was clearly detectable by indirect immunofluorescence in cells treated in vitro with LPS (1 micrograms/ml, 3 hr). Cx43 was also detected in leukocytes obtained from the peritoneal cavity 5-7 days after LPS-induced inflammation. In some leukocytes that formed clusters Cx43 immunoreactivity was present at appositional membranes, suggesting formation of homotypic gap junctions. In cell homogenates of activated peritoneal macrophages, Cx43, detected by Western blot analysis, was mostly unphosphorylated. A second in vivo inflammatory condition studied was that induced by ischemia-reperfusion of the hamster cheek pouch. In this system, leukocytes that adhered to venular endothelial cells after 1 hr of ischemia, followed by 1 hr of reperfusion, expressed Cx43. Electron microscope observations revealed small close appositions, putative gap junctions, at leukocyte-endothelial cell and leukocyte-leukocyte contacts. These results indicate that the expression of Cx43 can be induced in leukocytes during an inflammatory response which might allow for heterotypic or homotypic intercellular gap junctional communication. Gap junctions may play a role in leukocyte extravasation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Opossum kidney OKP cells express an apical membrane Na+/H+ antiporter that is encoded by NHE-3 (for Na+/H+ exchanger 3) and is similar in many respects to the renal proximal tubule apical membrane Na+/H+ antiporter. Chronic incubation of OKP cells in acid medium for 24 hr increases Na+/H(+)-antiporter activity and NHE-3 mRNA abundance. The increase in Na+/H(+)-antiporter activity was not prevented by H7, a protein kinase C/protein kinase A inhibitor, but was prevented by herbimycin A, a tyrosine kinase inhibitor. Incubation of cells in acid medium increased c-src activity, and this was inhibited by herbimycin A. To determine the role of the src family of nonreceptor protein-tyrosine kinases, Csk (for carboxyl-terminal src kinase), a physiologic inhibitor of these kinases, was overexpressed in OKP cells. In three clones overexpressing csk, acid-induced increases in Na+/H(+)-antiporter activity and NHE-3 mRNA abundance were inhibited. In these clones, inhibition of acid activation of Na+/H(+)-antiporter activity paralleled inhibition of acid activation of c-src. Neither herbimycin A nor overexpression of csk inhibited dexamethasone-induced increases in Na+/H(+)-antiporter activity. These studies show that decreases in pH activate c-src and that the src family nonreceptor protein-tyrosine kinases play a key role in acid activation of NHE-3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of factors both stimulating and inhibiting angiogenesis have been described. In the current work, we demonstrate that the angiogenic factor vascular endothelial growth factor (VEGF) activates mitogen-activated protein kinase (MAPK) as has been previously shown for basic fibroblast growth factor. The antiagiogenic factor 16-kDa N-terminal fragment of human prolactin inhibits activation of MAPK distal to autophosphorylation of the putative VEGF receptor, Flk-1, and phospholipase C-gamma. These data show that activation and inhibition of MAPK may play a central role in the control of angiogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The developmental stage- and erythroid lineage-specific activation of the human embryonic zeta- and fetal/adult alpha-globin genes is controlled by an upstream regulatory element [hypersensitive site (HS)-40] with locus control region properties, a process mediated by multiple nuclear factor-DNA complexes. In vitro DNase I protection experiments of the two G+C-rich, adult alpha-globin promoters have revealed a number of binding sites for nuclear factors that are common to HeLa and K-562 extracts. However, genomic footprinting analysis has demonstrated that only a subset of these sites, clustered between -130 and +1, is occupied in an erythroid tissue-specific manner. The function of these in vivo-occupied motifs of the alpha-globin promoters, as well as those previously mapped in the HS-40 region, is assayed by site-directed mutagenesis and transient expression in embryonic/fetal erythroid K-562 cells. These studies, together with our expression data on the human embryonic zeta-globin promoter, provide a comprehensive view of the functional roles of individual nuclear factor-DNA complexes in the final stages of transcriptional activation of the human alpha-like globin promoters by the HS-40 element.