211 resultados para Serine protein homologous
Resumo:
The association of protein kinase C (PKC) with membranes was found not to be specific for phosphatidyl-L-serine (PS). In particular, a synthetic phospholipid, dansyl-phosphatidylethanolamine, proved to be fully functional in the association of PKC with lipid bilayers and in mediating the interaction of this enzyme with diacylglycerol. Dansyl-phosphatidylethanolamine was also able to activate the enzyme in a Ca2+-dependent fashion. Differences in the ability to bind and activate PKC observed for an array of anionic lipids were not larger than alterations caused by changes in acyl chain composition. Thus, although different lipids interact to different extents with PKC, there are no specific binding sites for the PS headgroup on the enzyme. We found that lipids with a greater tendency to form inverted phases increased the binding of PKC to bilayers. However, these changes in lipid structure cannot be considered separately from the miscibility of lipid components in the membrane. For pairs of lipids with similar acyl chains, the dependence on PS concentration is sigmoidal, while for dissimilar acyl chains there is much less dependence of binding on PS concentration. The results can be explained in terms of differences in the lateral distribution of components in the membrane.
Resumo:
Hookworms are hematophagous nematodes that infect a wide range of mammalian hosts, including humans. There has been speculation for nearly a century as to the identity of the anticoagulant substances) used by these organisms to subvert host hemostasis. Using molecular cloning, we describe a family of potent small protein (75-84 amino acids) anticoagulants from the hookworm Ancylostoma caninum termed AcAP (A. caninum anticoagulant protein). Two recombinant AcAP members (AcAP5 and AcAP6) directly inhibited the catalytic activity of blood coagulation factor Xa (fXa), while a third form (AcAPc2) predominantly inhibited the catalytic activity of a complex composed of blood coagulation factor VIIa and tissue factor (fVIIa/TF). The inhibition of fVIIa/TF was by a unique mechanism that required the initial formation of a binary complex of the inhibitor with fXa at a site on the enzyme that is distinct from the catalytic center (exo-site). The sequence of AcAPc2 as well as the utilization of an exo-site on fXa distinguishes this inhibitor from the mammalian anticoagulant TFPI (tissue factor pathway inhibitor), which is functionally equivalent with respect to fXa-dependent inhibition of fIIa/TF. The relative sequence positions of the reactive site residues determined for AcAP5 with the homologous regions in AcAP6 and AcAPc2 as well as the pattern of 10 cysteine residues present in each of the inhibitors suggest that the AcAPs are distantly related to the family of small protein serine protease inhibitors found in the nonhematophagous nematode Ascaris lumbricoides var. suum.
Resumo:
Clotting factor XII (Hageman factor) contains epidermal growth factor (EGF)-homologous domains and is reported to be a potent mitogen for human hepatoma (HepG2) cells. In this study, we tested whether factor XII exhibits growth factor activity on several other EGF-sensitive target cells, including fetal hepatocytes, endothelial cells, alveolar type II cells, and aortic smooth muscle cells. We found that factor XII significantly enhanced [3H]thymidine incorporation in aortic smooth muscle cells (SMCs) and all other cells tested. Tyrphostin, a growth factor receptor/tyrosine kinase antagonist, inhibited both EGF- and factor XII-induced responses. However, differences in the levels of magnitude of DNA synthesis, the observed synergism between EGF and factor XII, and the differential sensitivity to tyrphostin suggest that the EGF receptor and the factor XII receptor may be nonidentical. The factor XII-induced mitogenic response was achieved at concentrations that were 1/10th the physiologic range for the circulating factor and was reduced by popcorn inhibitor, a specific factor XII protease inhibitor. Treatment of aortic SMCs with factor XII, as well as activated factor XII, resulted in a rapid and transient activation of a mitogen-activated/extracellular signal-regulated protein kinase with peak activity/tyrosine phosphorylation observed at 5 to 10 min of exposure. Taken together, these data (i) confirm that clotting factor XII functions as a mitogenic growth factor and (ii) demonstrate that factor XII activates a signal transduction pathway, which includes a mitogen-activated protein kinase.
Resumo:
The E2F1 transcription factor has a well-characterized activation domain at its C terminus and the E1A protein has a recently defined activation domain at its N terminus. Here we show that these activation domains are highly related in sequence. The sequence homology reflects, at least partly, the conservation of common binding sites for the RB and CBP/p300 proteins, which are preserved in the same relative order along E2F1 and E1A. Furthermore, the interaction of RB and CBP with these two activation domains results in the same functional consequences: RB represses both activation domains, whereas CBP stimulates them. We conclude that the activation domains of E1A(12s) and E2F1 belong to a novel functional class, characterized by specific protein binding sites. The implication of this conservation with respect to E1A-induced stimulation of E2F activity is discussed.
Resumo:
Protein-DNA interactions were studied in vivo at the region containing a human DNA replication origin, located at the 3' end of the lamin B2 gene and partially overlapping the promoter of another gene, located downstream. DNase I treatment of nuclei isolated from both exponentially growing and nonproliferating HL-60 cells showed that this region has an altered, highly accessible, chromatin structure. High-resolution analysis of protein-DNA interactions in a 600-bp area encompassing the origin was carried out by the in vivo footprinting technique based on the ligation-mediated polymerase chain reaction. In growing HL-60 cells, footprints at sequences homologous to binding sites for known transcription factors (members of the basic-helix-loop-helix family, nuclear respiratory factor 1, transcription factor Sp1, and upstream binding factor) were detected in the region corresponding to the promoter of the downstream gene. Upon conversion of cells to a nonproliferative state, a reduction in the intensity of these footprints was observed that paralleled the diminished transcriptional activity of the genomic area. In addition to these protections, in close correspondence to the replication initiation site, a prominent footprint was detected that extended over 70 nucleotides on one strand only. This footprint was absent from nonproliferating HL-60 cells, indicating that this specific protein-DNA interaction might be involved in the process of origin activation.
Resumo:
Neural pathways within the hippocampus undergo use-dependent changes in synaptic efficacy, and these changes are mediated by a number of signaling mechanisms, including cAMP-dependent protein kinase (PKA). The PKA holoenzyme is composed of regulatory and catalytic (C) subunits, both of which exist as multiple isoforms. There are two C subunit genes in mice, Calpha and Cbeta, and the Cbeta gene gives rise to several splice variants that are specifically expressed in discrete regions of the brain. We have used homologous recombination in embryonic stem cells to introduce an inactivating mutation into the mouse Cbeta gene, specifically targeting the Cbeta1-subunit isoform. Homozygous mutants showed normal viability and no obvious pathological defects, despite a complete lack of Cbeta1. The mice were analyzed in electrophysiological paradigms to test the role of this isoform in long-term modulation of synaptic transmission in the Schaffer collateral-CA1 pathway of the hippocampus. A high-frequency stimulus produced potentiation in both wild-type and Cbeta1-/- mice, but the mutants were unable to maintain the potentiated response, resulting in a late phase of long-term potentiation that was only 30% of controls. Paired pulse facilitation was unaffected in the mutant mice. Low-frequency stimulation produced long-term depression and depotentiation in wild-type mice but failed to produce lasting synaptic depression in the Cbeta1 -/- mutants. These data provide direct genetic evidence that PKA, and more specifically the Cbeta1 isoform, is required for long-term depression and depotentiation, as well as the late phase of long-term potentiation in the Schaffer collateral-CA1 pathway.
Resumo:
A key event in Ras-mediated signal transduction and transformation involves Ras interaction with its downstream effector targets. Although substantial evidence has established that the Raf-1 serine/threonine kinase is a critical effector of Ras function, there is increasing evidence that Ras function is mediated through interaction with multiple effectors to trigger Raf-independent signaling pathways. In addition to the two Ras GTPase activating proteins (GAPs; p120- and NF1-GAP), other candidate effectors include activators of the Ras-related Ral proteins (RalGDS and RGL) and phosphatidylinositol 3-kinase. Interaction between Ras and its effectors requires an intact Ras effector domain and involves preferential recognition of active Ras-GTP. Surprisingly, these functionally diverse effectors lack significant sequence homology and no consensus Ras binding sequence has been described. We have now identified a consensus Ras binding sequence shared among a subset of Ras effectors. We have also shown that peptides containing this sequence from Raf-1 (RKTFLKLA) and NF1-GAP (RRFFLDIA) block NF1-GAP stimulation of Ras GTPase activity and Ras-mediated activation of mitogen-activated protein kinases. In summary, the identification of a consensus Ras-GTP binding sequence establishes a structural basis for the ability of diverse effector proteins to interact with Ras-GTP. Furthermore, our demonstration that peptides that contain Ras-GTP binding sequences can block Ras function provides a step toward the development of anti-Ras agents.
Resumo:
An increasingly large number of proteins involved in signal transduction have been identified in recent years and shown to control different steps of cell survival, proliferation, and differentiation. Among the genes recently identified at the tip of the long arm of the human X chromosome, a novel gene, C1, encodes a protein that appears to represent a newly discovered member of the group of signaling proteins involved in regulation of the small GTP binding proteins of the ras superfamily. The protein encoded by C1, p115, is synthesized predominantly in cells of hematopoietic origin. It is characterized by two regions of similarity to motifs present in known proteins: GAP and SH3 homologous regions. Its localization in a narrow cytoplasmic region just below the plasma membrane and its inhibitory effect on stress fiber organization indicate that p115 may down regulate rho-like GTPases in hematopoietic cells.
Resumo:
Fertilization in Chlamydomonas is initiated by adhesive interactions between gametes of opposite mating types through flagellar glycoproteins called agglutinins. Interactions between these cell adhesion molecules signal for the activation of adenylyl cyclase through an interplay of protein kinases and ultimately result in formation of a diploid zygote. One of the early events during adhesion-induced signal transduction is the rapid inactivation of a flagellar protein kinase that phosphorylates a 48-kDa protein in the flagella. We report the biochemical and molecular characterization of the 48-kDa protein. Experiments using a bacterially expressed fusion protein show that the 48-kDa protein is capable of autophosphorylation on serine and tyrosine and phosphorylation of bovine beta-casein on serine, confirming that the 48-kDa protein itself has protein kinase activity. This protein kinase exhibits limited homology to members of the eukaryotic protein kinase superfamily and may be an important element in a signaling pathway in fertilization.
Resumo:
Transforming growth factor type beta (TGF-beta) is a multifunctional factor that regulates proliferation and differentiation of many cell types. TGF-beta mediates its effects by binding to and activating cell surface receptors that possess serine/threonine kinase activity. However, the intracellular signaling pathways through which TGF-beta receptors act remain largely unknown. Here we show that TGF-beta activates a 78-kDa protein (p78) serine/threonine kinase as evidenced by an in-gel kinase assay. Ligand-induced activation of the kinase was near-maximal 5 min after TGF-beta addition to the cells and occurred exclusively on serine and threonine residues. This kinase is distinct from TGF-beta receptor type II, as well as several cytoplasmic serine/threonine kinases of similar size, including protein kinase C, Raf, mitogen-activated protein kinase kinase kinase, and ribosomal S6 kinase. Indeed, these kinases can be separated almost completely from p78 kinase by immunoprecipitation with specific antibodies. Furthermore, using different cell lines, we demonstrate that p78 kinase is activated only in cells for which TGF-beta can act as a growth inhibitory factor. These data raise the interesting possibility that protein serine/threonine kinases contribute to the intracellular relay of biological signals originating from receptor serine/threonine kinases such as the TGF-beta receptors.
Resumo:
A previously undescribed 62-kDa protein (p62) that does not contain phosphotyrosine but, nevertheless, binds specifically to the isolated src homology 2 (SH2) domain of p56lck has been identified. The additional presence of the unique N-terminal region of p56lck prevents p62 binding to the SH2 domain. However, phosphorylation at Ser-59 (or alternatively, its mutation to Glu) reverses the inhibition and allows interaction of the p56lck SH2 domain with p62. Moreover, p62 is associated with a serine/threonine kinase activity and also binds to ras GTPase-activating protein, a negative regulator of the ras signaling pathway. Thus, phosphotyrosine-independent binding of p62 to the p56lck SH2 domain appears to provide an alternative pathway for p56lck signaling that is regulated by Ser-59 phosphorylation.
Resumo:
cdc18+ of Schizosaccharomyces pombe is a periodically expressed gene that is required for entry into S phase and for the coordination of S phase with mitosis. cdc18+ is related to the Saccharomyces cerevisiae gene CDC6, which has also been implicated in the control of DNA replication. We have identified a new Sch. pombe gene, orp1+, that encodes an 80-kDa protein with amino acid sequence motifs conserved in the Cdc18 and Cdc6 proteins. Genetic analysis indicates that orp1+ is essential for viability. Germinating spores lacking the orp1+ gene are capable of undergoing one or more rounds of DNA replication but fail to progress further, arresting as long cells with a variety of deranged nuclear structures. Unlike cdc18+, orp1+ is expressed constitutively during the cell cycle. cdc18+, CDC6, and orp1+ belong to a family of related genes that also includes the gene ORC1, which encodes a subunit of the origin recognition complex (ORC) of S. cerevisiae. The products of this gene family share a 250-amino acid domain that is highly conserved in evolution and contains several characteristic motifs, including a consensus purine nucleotide-binding motif. Among the members of this gene family, orp1+ is most closely related to S. cerevisiae ORC1. Thus, the protein encoded by orp1+ may represent a component of an Sch. pombe ORC. The orp1+ gene is also closely related to an uncharacterized putative human homologue. It is likely that the members of the cdc18/CDC6 family play key roles in the regulation of DNA replication during the cell cycle of diverse species from archaebacteria to man.
Resumo:
We have identified an amino acid sequence in the Drosophila Transformer (Tra) protein that is capable of directing a heterologous protein to nuclear speckles, regions of the nucleus previously shown to contain high concentrations of spliceosomal small nuclear RNAs and splicing factors. This sequence contains a nucleoplasmin-like bipartite nuclear localization signal (NLS) and a repeating arginine/serine (RS) dipeptide sequence adjacent to a short stretch of basic amino acids. Sequence comparisons from a number of other splicing factors that colocalize to nuclear speckles reveal the presence of one or more copies of this motif. We propose a two-step subnuclear localization mechanism for splicing factors. The first step is transport across the nuclear envelope via the nucleoplasmin-like NLS, while the second step is association with components in the speckled domain via the RS dipeptide sequence.
Resumo:
During meiosis in Saccharomyces cerevisiae, the first chemical step in homologous recombination is the occurrence of site-specific DNA double-strand breaks (DSBs). In wild-type cells, these breaks undergo resection of their 5' strand termini to yield molecules with 3' single-stranded tails. We have further characterized the breaks that accumulate in rad50S mutant stains defective in DSB resection. We find that these DSBs are tightly associated with protein via what appears to be a covalent linkage. When genomic DNA is prepared from meiotic rad50S cultures without protease treatment steps, the restriction fragments diagnostic of DSBs selectively partition to the organic-aqueous interphase in phenol extractions and band at lower than normal density in CsCl density gradients. Selective partitioning and decreased buoyant density are abolished if the DNA is treated with proteinase K prior to analysis. Similar results are obtained with sae2-1 mutant strains, which have phenotypes identical to rad50S mutants. The protein is bound specifically to the 5' strand termini of DSBs and is present at both 5' ends in at least a fraction of breaks. The stability of the complex to various protein denaturants and the strand specificity of the attachment are most consistent with a covalent linkage to DSB termini. We propose that the DSB-associated protein is the catalytic subunit of the meiotic recombination initiation nuclease and that it cleaves DNA via a covalent protein-DNA intermediate.
Resumo:
Microsomal cytochrome P450c17 catalyzes both steroid 17 alpha-hydroxylase activity and scission of the C17-C20 steroid bond (17,20-lyase) on the same active site. Adrenal 17 alpha-hydroxylase activity is needed to produce cortisol throughout life, but 17,20-lyase activity appears to be controlled independently in a complex, age-dependent pattern. We show that human P450c17 is phosphorylated on serine and threonine residues by a cAMP-dependent protein kinase. Phosphorylation of P450c17 increases 17,20-lyase activity, while dephosphorylation virtually eliminates this activity. Hormonally regulated serine phosphorylation of human P450c17 suggests a possible mechanism for human adrenarche and may be a unifying etiologic link between the hyperandrogenism and insulin resistance that characterize the polycystic ovary syndrome.