222 resultados para SYNTHASE-DEFICIENT MICE


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In both humans and animals, the hippocampus is critical to memory across modalities of information (e.g., spatial and nonspatial memory) and plays a critical role in the organization and flexible expression of memories. Recent studies have advanced our understanding of cellular basis of hippocampal function, showing that N-methyl-d-aspartate (NMDA) receptors in area CA1 are required in both the spatial and nonspatial domains of learning. Here we examined whether CA1 NMDA receptors are specifically required for the acquisition and flexible expression of nonspatial memory. Mice lacking CA1 NMDA receptors were impaired in solving a transverse patterning problem that required the simultaneous acquisition of three overlapping odor discriminations, and their impairment was related to an abnormal strategy by which they failed to adequately sample and compare the critical odor stimuli. By contrast, they performed normally, and used normal stimulus sampling strategies, in the concurrent learning of three nonoverlapping concurrent odor discriminations. These results suggest that CA1 NMDA receptors play a crucial role in the encoding and flexible expression of stimulus relations in nonspatial memory.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Core binding factor beta (CBF beta) is considered to be a transcriptional coactivator that dimerizes with transcription factors core binding factor alpha 1 (CBFA1), -2, and -3, and enhances DNA binding capacity of these transcription factors. CBF beta and CBFA2, which is also called acute myeloid leukemia 1 gene, are frequently involved in chromosomal translocations in human leukemia. To elucidate the function of CBF beta, mice carrying a mutation in the Cbfb locus were generated. Homozygous mutant embryos died between embryonic days 11.5-13.5 due to hemorrhage in the central nervous system. Mutant embryos had primitive erythropoiesis in yolk sac but lacked definitive hematopoiesis in fetal liver. In the yolk sac of mutant embryos, no erythroid or myeloid progenitors of definitive hematopoietic origin were detected, and the expression of flk-2/flt-3, the marker gene for early precursor cells of definitive hematopoiesis, was absent. These data suggest that Cbfb is essential for definitive hematopoiesis in liver, especially for the commitment to early hematopoietic precursor cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gangliosides, sialic acid-containing glycosphingolipids, are abundant in the vertebrate (mammalian) nervous system. Their composition is spatially and developmentally regulated, and gangliosides have been widely believed to lay essential roles in establishment of the nervous system, especially in neuritogenesis and synaptogenesis. However, this has never been tested directly. Here we report the generation of mice with a disrupted beta 1,4-N-acetylgalactosaminyltransferase (GM2/GD2 synthase; EC 2.4.1.92) gene. The mice lacked all complex gangliosides. Nevertheless, they did not show any major histological defects in their nervous systems or in gross behavior. Just a slight reduction in the neural conduction velocity from the tibial nerve to the somatosensory cortex, but not to the lumbar spine, was detected. These findings suggest that complex gangliosides are required in neuronal functions but not in the morphogenesis and organogenesis of the brain. The higher levels of GM3 and GD3 expressed in the brains of these mutant mice may be able to compensate for the lack of complex gangliosides.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To investigate the role of glycogen synthase in controlling glycogen accumulation, we generated three lines of transgenic mice in which the enzyme was overexpressed in skeletal muscle by using promoter-enhancer elements derived from the mouse muscle creatine kinase gene. In all three lines, expression was highest in muscles composed primarily of fast-twitch fibers, such as the gastrocnemius and anterior tibialis. In these muscles, glycogen synthase activity was increased by as much as 10-fold, with concomitant increases (up to 5-fold) in the glycogen content. The uridine diphosphoglucose concentrations were markedly decreased, consistent with the increase in glycogen synthase activity. Levels of glycogen phosphorylase in these muscles increased (up to 3-fold), whereas the amount of the insulin-sensitive glucose transporter 4 either remained unchanged or decreased. The observation that increasing glycogen synthase enhances glycogen accumulation supports the conclusion that the activation of glycogen synthase, as well as glucose transport, contributes to the accumulation of glycogen in response to insulin in skeletal muscle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We recorded in the CA1 region from hippocampal slices of prion protein (PrP) gene knockout mice to investigate whether the loss of the normal form of prion protein (PrPC) affects neuronal excitability as well as synaptic transmission in the central nervous system. No deficit in synaptic inhibition was found using field potential recordings because (i) responses induced by stimulation in stratum radiatum consisted of a single population spike in PrP gene knockout mice similar to that recorded from control mice and (ii) the plot of field excitatory postsynaptic potential slope versus the population spike amplitude showed no difference between the two groups of mice. Intracellular recordings also failed to detect any difference in cell excitability and the reversal potential for inhibitory postsynaptic potentials. Analysis of the kinetics of inhibitory postsynaptic current revealed no modification. Finally, we examined whether synaptic plasticity was altered and found no difference in long-term potentiation between control and PrP gene knockout mice. On the basis of our findings, we propose that the loss of the normal form of prion protein does not alter the physiology of the CA1 region of the hippocampus.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mice carrying mutations in either the dominant white-spotting (W) or Steel (Sl) loci exhibit deficits in melanogenesis, gametogenesis, and hematopoiesis. W encodes the Kit receptor tyrosine kinase, while Sl encodes the Kit ligand, Steel factor, and the receptor-ligand pair are contiguously expressed at anatomical sites expected from the phenotypes of W and Sl mice. The c-kit and Steel genes are also both highly expressed in the adult murine hippocampus: Steel is expressed in dentate gyrus neurons whose mossy fiber axons synapse with the c-kit expressing CA3 pyramidal neurons. We report here that Sl/Sld mutant mice have a specific deficit in spatial learning. These mutant mice are also deficient in baseline synaptic transmission between the dentate gyrus and CA3 but show normal long-term potentiation in this pathway. These observations demonstrate a role for Steel factor/Kit signaling in the adult nervous system and suggest that a severe deficit in hippocampal-dependent learning need not be associated with reduced hippocampal long-term potentiation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cytochrome P450 1A2 (CYP1A2) is a predominantly hepatic enzyme known to be important in the metabolism of numerous foreign chemicals of pharmacologic, toxicologic, and carcinogenic significance. CYP1A2 substrates include aflatoxin B1, acetaminophen, and a variety of environmental arylamines. To define better the developmental and metabolic functions of this enzyme, we developed a CYP1A2-deficient mouse line by homologous recombination in embryonic stem cells. Mice homozygous for the targeted Cyp1a2 gene, designated Cyp1a2(-/-), are completely viable and fertile; histologic examination of 15-day embryos, newborn pups, and 3-week-old mice revealed no abnormalities. No CYP1A2 mRNA was detected by Northern blot analysis. Moreover, mRNA levels of Cyp1a1, the other gene in the same subfamily, appear unaffected by loss of the Cyp1a2 gene. Because the muscle relaxant zoxazolamine is a known substrate for CYP1A2, we studied the Cyp1a2(-/-) genotype by using the zoxazolamine paralysis test: the Cyp1a2(-/-) mice exhibited dramatically lengthened paralysis times relative to the Cyp1a2(+/+) wild-type animals, and the Cyp1a2(+/-) heterozygotes showed an intermediate effect. Availability of a viable and fertile CYP1A2-deficient mouse line will provide a valuable tool for researchers wishing to define the precise role of CYP1A2 in numerous metabolic and pharmacokinetic processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Murine inducible nitric oxide (NO) synthase (iNOS) is catalytically active only in dimeric form. Assembly of its purified subunits into a dimer requires H4B. To understand the structure-activity relationships of human iNOS, we constitutively expressed recombinant human iNOS in NIH 3T3 cells by using a retroviral vector. These cells are deficient in de novo H4B biosynthesis and the role of H4B in the expression and assembly of active iNOS in an intact cell system could be studied. In the absence of added H4B, NO synthesis by the cells was minimal, whereas cells grown with supplemental H4B or the H4B precursor sepiapterin generated NO (74.1 and 63.3 nmol of nitrite per 10(6) cells per 24 h, respectively). NO synthesis correlated with an increase in intracellular H4B but no increase in iNOS protein. Instead, an increased percentage of dimeric iNOS was observed, rising from 20% in cytosols from unsupplemented cells to 66% in H4B-supplemented cell cytosols. In all cases, only dimeric iNOS displayed catalytic activity. Cytosols prepared from H4B-deficient cells exhibited little iNOS activity but acquired activity during a 60- to 120-min incubation with H4B, reaching final activities of 60-72 pmol of citrulline per mg of protein per min. Reconstitution of cytosolic NO synthesis activity was associated with conversion of monomers into dimeric iNOS during the incubation. Thus, human iNOS subunits dimerize to form an active enzyme, and H4B plays a critical role in promoting dimerization in intact cells. This reveals a post-translational mechanism by which intracellular H4B can regulate iNOS expression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nitric oxide produced by cytokine-inducible nitric oxide synthase (iNOS) is thought to be important in the pathogenesis of septic shock. To further our understanding of the role of iNOS in normal biology and in a variety of inflammatory disorders, including septic shock, we have used gene targeting to generate a mouse strain that lacks iNOS. Mice lacking iNOS were indistinguishable from wild-type mice in appearance and histology. Upon treatment with lipopolysaccharide and interferon gamma, peritoneal macrophages from the mutant mice did not produce nitric oxide measured as nitrite in the culture medium. In addition, lysates of these cells did not contain iNOS protein by immunoblot analysis or iNOS enzyme activity. In a Northern analysis of total RNA, no iNOS transcript of the correct size was detected. No increases in serum nitrite plus nitrate levels were observed in homozygous mutant mice treated with a lethal dose of lipopolysaccharide, but the mutant mice exhibited no significant survival advantage over wild-type mice. These results show that lack of iNOS activity does not prevent mortality in this murine model for septic shock.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nitric oxide (NO) is known to mediate increases in regional cerebral blood flow elicited by CO2 inhalation. In mice with deletion of the gene for neuronal NO synthase (NOS), CO2 inhalation augments cerebral blood flow to the same extent as in wild-type mice. However, unlike wild-type mice, the increased flow in mutants is not blocked by the NOS inhibition, N omega-nitro-L-arginine, and CO2 exposure fails to increase brain levels of cGMP. Topical acetylcholine elicits vasodilation in the mutants which is blocked by N omega-nitro-L-arginine, indicating normal functioning of endothelial NOS. Moreover, immunohistochemical staining for endothelial NOS is normal in the mutants. Thus, following loss of neuronal NOS, the cerebral circulatory response is maintained by a compensatory system not involving NO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alterations in pathways mediated by retinoblastoma susceptibility gene (RB) product are among the most common in human cancer. Mice with a single copy of the Rb gene are shown to develop a syndrome of multiple neuroendocrine neoplasia. The earliest Rb-deficient atypical cells were identified in the intermediate and anterior lobes of the pituitary, the thyroid and parathyroid glands, and the adrenal medulla within the first 3 months of postnatal development. These cells form gross tumors with various degrees of malignancy by postnatal day 350. By age of 380 days, 84% of Rb+/− mice exhibited lung metastases from C-cell thyroid carcinomas. Expression of a human RB transgene in the Rb+/− mice suppressed carcinogenesis in all tissues studied. Of particular clinical relevance, the frequency of lung metastases also was reduced to 12% in Rb+/− mice by repeated i.v. administration of lipid-entrapped, polycation-condensed RB complementary DNA. Thus, in spite of long latency periods during which secondary alterations can accumulate, the initial loss of Rb function remains essential for tumor progression in multiple types of neuroendocrine cells. Restoration of RB function in humans may prove an effective general approach to the treatment of RB-deficient disseminated tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conversion of prothrombin (FII) to the serine protease, thrombin (FIIa), is a key step in the coagulation cascade because FIIa triggers platelet activation, converts fibrinogen to fibrin, and activates regulatory pathways that both promote and ultimately suppress coagulation. However, several observations suggest that FII may serve a broader physiological role than simply stemming blood loss, including the identification of multiple G protein-coupled, thrombin-activated receptors, and the well-documented mitogenic activity of FIIa in in vitro test systems. To explore in greater detail the physiological roles of FII in vivo, FII-deficient (FII−/−) mice were generated. Inactivation of the FII gene leads to partial embryonic lethality with more than one-half of the FII−/− embryos dying between embryonic days 9.5 and 11.5. Bleeding into the yolk sac cavity and varying degrees of tissue necrosis were observed in many FII−/− embryos within this gestational time frame. However, at least one-quarter of the FII−/− mice survived to term, but ultimately they, too, developed fatal hemorrhagic events and died within a few days of birth. This study directly demonstrates that FII is important in maintaining vascular integrity during development as well as postnatal life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mice, homozygous for disrupted ganglioside GM2/GD2 synthase (EC 2.4.1.94) gene and lacking all complex gangliosides, do not display any major neurologic abnormalities. Further examination of these mutant mice, however, revealed that the males were sterile and aspermatogenic. In the seminiferous tubules of the mutant mice, a number of multinuclear giant cells and vacuolated Sertoli cells were observed. The levels of testosterone in the serum of these mice were very low, although testosterone production equaled that produced in wild-type mice. Testosterone was found to be accumulated in interstitial Leydig cells, and intratesticularly injected testosterone was poorly drained in seminiferous fluid in the mutant mice. These results suggested that complex gangliosides are essential in the transport of testosterone to the seminiferous tubules and bloodstream from Leydig cells. Our results provide insights into roles of gangliosides in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To test directly whether fibrin(ogen) is a key binding site for apolipoprotein(a) [apo(a)] in vessel walls, apo(a) transgenic mice and fibrinogen knockout mice were crossed to generate fibrin(ogen)-deficient apo(a) transgenic mice and control mice. In the vessel wall of apo(a) transgenic mice, fibrin(ogen) deposition was found to be essentially colocalized with focal apo(a) deposition and fatty-streak type atherosclerotic lesions. Fibrinogen deficiency in apo(a) transgenic mice decreased the average accumulation of apo(a) in vessel walls by 78% and the average lesion (fatty streak type) development by 81%. Fibrinogen deficiency in wild-type mice did not significantly reduce lesion development. Our results suggest that fibrin(ogen) provides one of the major sites to which apo(a) binds to the vessel wall and participates in the generation of atherosclerosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SMAD2 is a member of the transforming growth factor β and activin-signaling pathway. To examine the role of Smad2 in postgastrulation development, we independently generated mice with a null mutation in this gene. Smad2-deficient embryos die around day 7.5 of gestation because of failure of gastrulation and failure to establish an anterior–posterior (A-P) axis. Expression of the homeobox gene Hex (the earliest known marker of the A-P polarity and the prospective head organizer) was found to be missing in Smad2-deficient embryos. Homozygous mutant embryos and embryonic stem cells formed mesoderm derivatives revealing that mesoderm induction is SMAD2 independent. In the presence of wild-type extraembryonic tissues, Smad2-deficient embryos developed beyond 7.5 and up to 10.5 days postcoitum, demonstrating a requirement for SMAD2 in extraembryonic tissues for the generation of an A-P axis and gastrulation. The rescued postgastrulation embryos showed malformation of head structures, abnormal embryo turning, and cyclopia. Our results show that Smad2 expression is required at several stages during embryogenesis.