182 resultados para OF-FUNCTION MUTATIONS
Resumo:
In patients with rheumatoid arthritis the synovial membrane of the affected joint is infiltrated with lymphoid cells which may be arranged in structures resembling germinal centers. We have directly isolated such infiltrates to determine whether B-cell clones within them are selected and expanded in a process analogous to that which normally takes place in the germinal centers in secondary lymphoid organs. The data suggest that an antigen-driven process leads to the accumulation of B cells in the synovial membrane. The finding of identical sequences in consecutive sections suggests that under conditions of chronic stimulation, memory B cells may enter a stage of differentiation in which they proliferate without further accumulation of somatic mutations. Further we see intraclonal diversity which underlines the germinal center-like character of these infiltrates and demonstrates that a microenvironment is built up in this nonlymphoid tissue which supports antigen-dependent differentiation of B cells. This is the first demonstration, to our knowledge, of a germinal center-like reaction outside lymphoid tissue.
Resumo:
Due to the resurgence of tuberculosis and the emergence of multidrug-resistant strains, fluoroquinolones (FQ) are being used in selected tuberculosis patients, but FQ-resistant strains of Mycobacterium tuberculosis have rapidly begun to appear. The mechanisms involved in FQ resistance need to be elucidated if the effectiveness of this class of antibiotics is to be improved and prolonged. By using the rapid-growing Mycobacterium smegmatis as a model genetic system, a gene was selected that confers low-level FQ resistance when present on a multicopy plasmid. This gene, lfrA, encodes a putative membrane efflux pump of the major facilitator family, which appears to recognize the hydrophilic FQ, ethidium bromide, acridine, and some quaternary ammonium compounds. It is homologous to qacA from Staphylococcus aureus, tcmA, of Streptomyces glaucescens, and actII and mmr, both from Streptomyces coelicoler. Increased expression of lfrA augments the appearance of subsequent mutations to higher-level FQ resistance.
Resumo:
Transgenic and gene knockout techniques allow for in vivo study of the consequences of adding or subtracting specific genes. However, in some instances, such as the study of lethal mutations or of the physiological consequences of changing gene expression, turning on and off an introduced gene at will would be advantageous. We have used cytochrome p450 1A1 promoter to drive expression of the human apolipoprotein E (apoE) gene in transgenic mice. In six independent lines, robust expression of the transgene depended upon injection of the inducer beta-naphthoflavone, whereas the seventh line had high basal expression that was augmented further by the inducer. The low level of basal expression in an inducer-dependent line was confirmed upon breeding the transgene onto the hypercholesterolemic apoE-deficient background. In the basal state transgene expression was physiologically insignificant, as these mice were as hypercholesterolemic as their nontransgenic apoE-deficient littermates. When injected with the inducer, plasma cholesterol levels of the transgenic mice decreased dramatically as apoE expression was induced to yield greater than physiological levels in plasma. The inducer could pass transplacentally from an injected mother to her fetuses with concomitant induction of fetal transgene mRNA. Inducer could also pass via breast milk from an injected mother to her suckling neonatal pups, giving rise to the induction of human apoE in neonate plasma. These finding suggest a strategy to temporarily ameliorate genetic deficiencies that would otherwise lead to fetal or neonatal lethality.
Resumo:
beta-Oxidation of long-chain fatty acids provides the major source of energy in the heart. Defects in enzymes of the beta-oxidation pathway cause sudden, unexplained death in childhood, acute hepatic encephalopathy or liver failure, skeletal myopathy, and cardiomyopathy. Very-long-chain acyl-CoA dehydrogenase [VLCAD; very-long-chain-acyl-CoA:(acceptor) 2,3-oxidoreductase, EC 1.3.99.13] catalyzes the first step in beta-oxidation. We have isolated the human VLCAD cDNA and gene and determined the complete nucleotide sequences. Polymerase chain reaction amplification of VLCAD mRNA and genomic exons defined the molecular defects in two patients with VLCAD deficiency who presented with unexplained cardiac arrest and cardiomyopathy. In one, a homozygous mutation in the consensus dinucleotide of the donor splice site (g+1-->a) was associated with universal skipping of the prior exon (exon 11). The second patient was a compound heterozygote, with a missense mutation, C1837-->T, changing the arginine at residue 613 to tryptophan on one allele and a single base deletion at the intron-exon 6 boundary as the second mutation. This initial delineation of human mutations in VLCAD suggests that VLCAD deficiency reduces myocardial fatty acid beta-oxidation and energy production and is associated with cardiomyopathy and sudden death in childhood.
Resumo:
Fasciclin II (Fas II), an NCAM-like cell adhesion molecule in Drosophila, is expressed on a subset of embryonic axons and controls selective axon fasiculation. Fas II is also expressed in imaginal discs. Here we use genetic analysis to show that Fas II is required for the control of proneural gene expression. Clusters of cells in the eye-antennal imaginal disc express the achaete proneural gene and give rise to mechanosensory neurons; other clusters of cells express the atonal gene and give rise to ocellar photoreceptor neurons. In fasII loss-of-function mutants, the expression of both proneural genes is absent in certain locations, and, as a result, the corresponding sensory precursors fail to develop. In fasII gain-of-function conditions, extra sensory structures arise from this same region of the imaginal disc. Mutations in the Abelson tyrosine kinase gene show dominant interactions with fasII mutations, suggesting that Abl and Fas II function in a signaling pathway that controls proneural gene expression.
Resumo:
Loss of function of any one of three UPF genes prevents the accelerated decay of nonsense mRNAs in Saccharomyces cerevisiae. We report the identification and DNA sequence of UPF3, which is present in one nonessential copy on chromosome VII. Upf3 contains three putative nuclear localization signal sequences, suggesting that it may be located in a different compartment than the cytoplasmic Upf1 protein. Epitope-tagged Upf3 (FLAG-Upf3) does not cofractionate with polyribosomes or 80S ribosomal particles. Double disruptions of UPF1 and UPF3 affect nonsense mRNA decay in a manner indistinguishable from single disruptions. These results suggest that the Upf proteins perform related functions in a common pathway.
Resumo:
Myeloid leukemic M1 cells that do not express p53 and transfected M1 clones that constitutively express the [Val135]p53 mutant or deregulated c-myc or coexpressing both genes grew autonomously in culture with a similar growth rate and cloning efficiency. Expression of deregulated c-myc in M1 leukemic cells enhanced susceptibility to induction of apoptotic cell death and resulted in a reduced leukemogenicity when injected into isologous mice. Expression of the [Val135]p53 mutant did not change cell susceptibility to induction of apoptosis or leukemogenicity, but expression of this mutant p53 suppressed the effects of deregulated c-myc on these properties. The results indicate that the [Val135]p53 mutant can show a gain of function for susceptibility to apoptosis and leukemogenicity in leukemic cells with deregulated c-myc and, thus, enhance tumor development.
Resumo:
Mutational analysis based on the pharmacological differences between mammalian and amphibian angiotensin II receptors (AT receptors) previously identified 7 aa residues located in transmembrane domains (TMs) III (Val-108), IV (Ala-163), V (Pro-192, Thr-198), VI (Ser-252), and VII (Leu-300, Phe-301) of the rat AT receptor type 1b (rAT1b receptor) that significantly influenced binding of the nonpeptide antagonist Losartan. Further studies have shown that an additional 6 residues in the rAT1b receptor TMs II (Ala-73), III (Ser-109, Ala-114, Ser-115), VI (Phe-248), and VII (Asn-295) are important in Losartan binding. The 13 residues required for Losartan binding in the mammalian receptor were exchanged for the corresponding amino acids in the Xenopus AT receptor type a (xATa receptor) to generate a mutant amphibian receptor that bound Losartan with the same affinity as the rAT1b receptor (Losartan IC50 values: rAT1b, 2.2 +/- 0.2 nM: xATa, > 50 microM; mutant, 2.0 +/- 0.1 nM). To our knowledge, this is the first report of a gain-of-function mutant in which the residues crucial to formation of a ligand binding site in a mammalian peptide hormone receptor were transferred to a previously unresponsive receptor by site-directed mutagenesis. Ala substitutions and comparison of mammalian and amphibian combinatorial mutants indicated that TM III in the rAT1b receptor plays a key role in Losartan binding. Identification of residues involved in nonpeptide ligand binding will facilitate studies aimed at elucidating the chemical basis for ligand recognition in the AT receptor and peptide hormone receptors in general.
Resumo:
The signaling mechanisms responsible for the induced expression of interferon (IFN) genes by viral infection or double-stranded RNA (dsRNA) are not well understood. Here we investigate the role of the interferon-induced dsRNA-dependent protein kinase PKR in the regulation of IFN induction. Biological activities attributed to PKR include regulating protein synthesis, mediating IFN actions, and functioning as a possible tumor suppressor. Since binding of dsRNA is required for its activation, PKR has been considered as a candidate signal transducer for regulating IFN expression. To examine this role of PKR, loss-of-function phenotypes in stable transformants of promonocytic U-937 cells were achieved by two different strategies, overexpression of an antisense PKR transcript or a dominant negative PKR mutant gene. Both types of PKR-deficient cells were more permissive for viral replication than the control U-937 cells. As the result of PKR loss, they also showed impaired induction of IFN-alpha and IFN-beta genes in response to several inducers--specifically, encephalomyocarditis virus, lipopolysaccharide, and phorbol 12-myristate 13-acetate. Interestingly, while IFN-alpha induction by dsRNA was impaired in PKR-deficient cells, IFN-beta induction remained intact. Loss of PKR function also resulted in decreased antiviral activity as elicited by IFN-alpha and, to a greater extent, by IFN-gamma. These results implicate PKR in the regulation of several antiviral activities.
Resumo:
Establishment of loss-of-function phenotypes is often a key step in determining the biological function of a gene. We describe a procedure to obtain mutant petunia plants in which a specific gene with known sequence is inactivated by the transposable element dTph1. Leaves are collected from batches of 1000 plants with highly active dTph1 elements, pooled according to a three-dimensional matrix, and screened by PCR using a transposon- and a gene-specific primer. In this way individual plants with a dTph1 insertion can be identified by analysis of about 30 PCRs. We found insertion alleles for various genes at a frequency of about 1 in 1000 plants. The plant population can be preserved by selfing all the plants, so that it can be screened for insertions in many genes over a prolonged period.
Resumo:
We studied blood lymphocytes of human immunodeficiency virus (HIV)-seropositive and -negative homosexual men for the presence of T(8;14) translocations that recombine c-myc and immunoglobulin heavy-chain (IgH) mu/IgH alpha switch regions. Clones with T(8;14) translocations were detected in 10.5% (12/114) of the HIV-positive and in 2.0% of the 99 uninfected patients. The majority of recombinations were found at a single time point only. Four patients, however, harbored multiple (up to four) and persistent (up to 9 years) translocation-positive cell clones. No correlation between the presence of these aberrant lymphocytes and a later lymphoma could be established. The exon 1/intron 1 region of the recombined c-myc was investigated for the presence of point mutations and these were found in the nonpersistent clones. Additional alterations detected in these clones included duplications and a deletion in the c-myc gene. The pattern of base substitution indicates that they were introduced after the translocation event.
Resumo:
TFIIF is unique among the general transcription factors because of its ability to control the activity of RNA polymerase II at both the initiation and elongation stages of transcription. Mammalian TFIIF, a heterodimer of approximately 30-kDa (RAP30) and approximately 70-kDa (RAP74) subunits, assists TFIIB in recruiting RNA polymerase II into the preinitiation complex and activates the overall rate of RNA chain elongation by suppressing transient pausing by polymerase at many sites on DNA templates. A major objective of efforts to understand how TFIIF regulates transcription has been to establish the relationship between its initiation and elongation activities. Here we establish this relationship by demonstrating that TFIIF transcriptional activities are mediated by separable functional domains. To accomplish this, we sought and identified distinct classes of RAP30 mutations that selectively block TFIIF activity in transcription initiation and elongation. We propose that (i) TFIIF initiation activity is mediated at least in part by RAP30 C-terminal sequences that include a cryptic DNA-binding domain similar to conserved region 4 of bacterial sigma factors and (ii) TFIIF elongation activity is mediated in part by RAP30 sequences located immediately upstream of the C terminus in a region proposed to bind RNA polymerase II and by additional sequences located in the RAP30 N terminus.
Resumo:
Adaptive reversion of a lac- frameshift mutation in Escherichia coli appears to be due to DNA polymerase errors, implying that DNA is being synthesized although the cells are not dividing. Here we report that the production of adaptive lac+ revertants (i) is much higher when the mutational target is on the F' episome than when it is on the bacterial chromosome; (ii) is enhanced by functions required for conjugation; but (iii) does not require conjugation per se. These results suggest that, in static cells, DNA synthesis is initiated from the conjugal origin of transfer. Mutations may arise as polymerase errors during this synthesis or during synthesis stimulated by recombination among the multiple gene copies.
Resumo:
Cytokines are important regulators of hematopoesis. Mutations in gamma c, which is a subunit shared by the receptors for interleukin (IL) 2, IL-4, and IL-7, have been causally associated with human X chromosome-linked severe combined immunodeficiency disease. This finding indicates a mandatory role for cytokine receptor signaling at one or more stages of lymphocyte development. To evaluate the cellular level at which gamma c is critical for lymphopoiesis, the effect of monoclonal antibodies to gamma c on the capacity of syngeneic bone marrow cells to reconstitute the hematopoietic compartment of lethally irradiated recipient mice was examined. We show that monoclonal antibody to gamma c blocked lymphocyte development at or before the appearance of pro-B cells and prior to or at the seeding of the thymus by precursor cells while erythromyeloid cell development was normal. These results suggest that one level of lymphocyte development that requires gamma c is a point in hematopoietic cell differentiation near the divergence of lymphopoiesis and erythromyelopoesis.
Resumo:
Translocations involving chromosome band 11q23, found in 5-10% of human acute leukemias, disrupt the ALL-1 gene. This gene is fused by reciprocal translocation with a variety of other genes in acute lymphoblastic and myelogenous leukemias, and it undergoes self-fusion in acute myeloid leukemias with normal karyotype or trisomy 11. Here we report an alteration of the ALL-1 gene in a gastric carcinoma cell line (Mgc80-3). Characterization of this rearrangement revealed a three-way complex translocation, involving chromosomes 1 and 11, resulting in a partial duplication of the ALL-1 gene. Sequencing of reverse transcription-PCR products and Northern blot analysis showed that only the partially duplicated ALL-1 gene was transcribed, producing an mRNA with exon 8 fused to exon 2. This report of ALL-1 gene rearrangement in a solid tumor suggests that ALL-1 plays a role in the pathogenesis of some solid malignancies. The absence of the normal transcript in this cell line, in association with the loss-of-heterozygosity studies on chromosome 11q23 seen in solid tumors, suggests that ALL-1 is involved in tumorigenesis by a loss-of-function mechanism.