198 resultados para DROSOPHILA
Resumo:
In Drosophila, stripe (sr) gene function is required for normal muscle development. Some mutations disrupt embryonic muscle development and are lethal. Other mutations cause total loss of only a single muscle in the adult. Molecular analysis shows that sr encodes a predicted protein containing a zinc finger motif. This motif is homologous to the DNA binding domains encoded by members of the early growth response (egr) gene family. In mammals, expression of egr genes is induced by intercellular signals, and there is evidence for their role in many developmental events. The identification of sr as an egr gene and its pattern of expression suggest that it functions in muscle development via intercellular communication.
Resumo:
Induction of Drosophila hsp70 protein was detected during aging in flight muscle and leg muscle in the absence of heat shock, using an hsp70-specific monoclonal antibody, and in transgenic flies containing hsp70-beta-galactosidase fusion protein reporter constructs. While hsp70 and reporter proteins were induced during aging, hsp70 message levels were not, indicating that aging-specific induction is primarily posttranscriptional. In contrast, hsp22 and hsp23 were found to be induced during aging at the RNA level and with a broader tissue distribution. The same muscle-specific hsp70 reporter expression pattern was observed in young flies mutant for catalase (H2O2:H2O2 oxidoreductase, EC 1.11.1.6). In catalase (cat) hypomorphic lines where flies survived to older ages, the time course of hsp70 reporter expression during aging was accelerated, and the initial and ultimate levels of expression were increased. The hsp70 reporter was also induced in young flies mutant for copper/zinc superoxide dismutase (superoxide:superoxide oxidoreductase, EC 1.15.1.1). Taken together, the results suggest that aging-specific hsp70 expression may be a result of oxidative damage.
Resumo:
In this paper we report a recessive mutation, immune deficiency (imd), that impairs the inducibility of all genes encoding antibacterial peptides during the immune response of Drosophila. When challenged with bacteria, flies carrying this mutation show a lower survival rate than wild-type flies. We also report that, in contrast to the antibacterial peptides, the antifungal peptide drosomycin remains inducible in a homozygous imd mutant background. These results point to the existence of two different pathways leading to the expression of two types of target genes, encoding either the antibacterial peptides or the antifungal peptide drosomycin.
Resumo:
The silver (svr) gene of Drosophila melanogaster is required for viability, and severe mutant alleles result in death prior to eclosion. Adult flies homozygous or hemizygous for weaker alleles display several visible phenotypes, including cuticular structures that are pale and silvery in color due to reduced melanization. We have identified and cloned the DNA encoding the svr gene and determined the sequence of several partially overlapping cDNAs derived from svr mRNAs. The predicted amino acid sequence of the polypeptides encoded by these cDNAs indicates that the silver proteins are members of the family of preprotein-processing carboxypeptidases that includes the human carboxypeptidases E, M, and N. One class of svr mRNAs is alternatively spliced to encode at least two polyproteins, each of which is composed of two carboxypeptidase domains.
Resumo:
A transposon based on the transposable element Minos from Drosophila hydei was introduced into the genome of Drosophila melanogaster using transformation mediated by the Minos transposase. The transposon carries a wild-type version of the white gene (w) of Drosophila inserted into the second exon of Minos. Transformation was obtained by injecting the transposon into preblastoderm embryos that were expressing transposase either from a Hsp70-Minos fusion inserted into the genome via P-element-mediated transformation or from a coinjected plasmid carrying the Hsp70-Minos fusion. Between 1% and 6% of the fertile injected individuals gave transformed progeny. Four of the insertions were cloned and the DNA sequences flanking the transposon ends were determined. The "empty" sites corresponding to three of the insertions were amplified from the recipient strain by PCR, cloned, and sequenced. In all cases, the transposon has inserted into a TA dinucleotide and has created the characteristic TA target site duplication. In the absence of transposase, the insertions were stable in the soma and the germ line. However, in the presence of the Hsp70-Minos gene the Minos-w transposon excises, resulting in mosaic eyes and germ-line reversion to the white phenotype. Minos could be utilized as an alternative to existing systems for transposon tagging and enhancer trapping in Drosophila; it might also be of use as a germ-line transformation vector for non-Drosophila insects.
Resumo:
Drosophila melanogaster is sexually dimorphic for cuticular hydrocarbons, with males and females having strikingly different profiles of the long-chain compounds that act as contact pheromones. Gas-chromatographic analysis of sexual mosaics reveals that the sex specificity of hydrocarbons is located in the abdomen. This explains previous observations that D. melanogaster males display the strongest courtship toward mosaics with female abdomens. We also show that males of the sibling species Drosophila simulans preferentially court D. melanogaster mosaics with male abdomens. Because the primary male hydrocarbon in D. melanogaster is also the primary female hydrocarbon in D. simulans, this supports the idea that interspecific differences in cuticular hydrocarbons contribute to sexual isolation.
Resumo:
In many vertebrate and invertebrate cells, inositol 1,4,5-trisphospate production induces a biphasic Ca2+ signal. Mobilization of Ca2+ from internal stores drives the initial burst. The second phase, referred to as store-operated Ca2+ entry (formerly capacitative Ca2+ entry), occurs when depletion of intracellular Ca2+ pools activates a non-voltage-sensitive plasma membrane Ca2+ conductance. Despite the prevalence of store-operated Ca2+ entry, no vertebrate channel responsible for store-operated Ca2+ entry has been reported. trp (transient receptor potential), a Drosophila gene required in phototransduction, encodes the only known candidate for such a channel throughout phylogeny. In this report, we describe the molecular characterization of a human homolog of trp, TRPC1. TRPC1 (transient receptor potential channel-related protein 1) was 40% identical to Drosophila TRP over most of the protein and lacked the charged residues in the S4 transmembrane region proposed to be required for the voltage sensor in many voltage-gated ion channels. TRPC1 was expressed at the highest levels in the fetal brain and in the adult heart, brain, testis, and ovaries. Evidence is also presented that TRPC1 represents the archetype of a family of related human proteins.
Resumo:
Nitric oxide (NO) is an intercellular messenger involved with various aspects of mammalian physiology ranging from vasodilation and macrophage cytotoxicity to neuronal transmission. NO is synthesized from L-arginine by NO synthase (NOS). Here, we report the cloning of a Drosophila NOS gene, dNOS, located at cytological position 32B. The dNOS cDNA encodes a protein of 152 kDa, with 43% amino acid sequence identity to rat neuronal NOS. Like mammalian NOSs, DNOS protein contains putative binding sites for calmodulin, FMN, FAD, and NADPH. DNOS activity is Ca2+/calmodulin dependent when expressed in cell culture. An alternative RNA splicing pattern also exists for dNOS, which is identical to that for vertebrate neuronal NOS. These structural and functional observations demonstrate remarkable conservation of NOS between vertebrates and invertebrates.
Resumo:
Many features of Down syndrome might result from the overdosage of only a few genes located in a critical region of chromosome 21. To search for these genes, cosmids mapping in this region were isolated and used for trapping exons. One of the trapped exons obtained has a sequence very similar to part of the Drosophila single-minded (sim) gene, a master regulator of the early development of the fly central nervous system midline. Mapping data indicated that this exonic sequence is only present in the Down syndrome-critical region in the human genome. Hybridization of this exonic sequence with human fetal kidney poly(A)+ RNA revealed two transcripts of 6 and 4.3 kb. In situ hybridization of a probe derived from this exon with human and rat fetuses showed that the corresponding gene is expressed during early fetal life in the central nervous system and in other tissues, including the facial, skull, palate, and vertebra primordia. The expression pattern of this gene suggests that it might be involved in the pathogenesis of some of the morphological features and brain anomalies observed in Down syndrome.
Resumo:
Millions of people die every year in the tropical world from diseases transmitted by hematophagous insects. Failure of conventional containment measures emphasizes the need for additional approaches, such as transformation of vector insects with genes that restrict vectorial capacity. The availability of an efficient promoter to drive foreign genes in transgenic insects is a necessary tool to test the feasibility of such approach. Here we characterize the putative promoter region of a black fly midgut carboxypeptidase gene and show that these sequences correctly direct the expression of a beta-glucuronidase reporter in Drosophila melanogaster. By histochemical staining and mRNA analysis, we found that the gene is expressed strongly and gut-specifically in the transgenic Drosophila. This gut-specific black fly carboxypeptidase promoter provides a valuable tool for the study of disease vectors.
Resumo:
Mutations in Cu/Zn superoxide dismutase (SOD), a hallmark of familial amyotrophic lateral sclerosis (FALS) in humans, are shown here to confer striking neuropathology in Drosophila. Heterozygotes with one wild-type and one deleted SOD allele retain the expected 50% of normal activity for this dimeric enzyme. However, heterozygotes with one wild-type and one missense SOD allele show lesser SOD activities, ranging from 37% for a heterozygote carrying a missense mutation predicted from structural models to destabilize the dimer interface, to an average of 13% for several heterozygotes carrying missense mutations predicted to destabilize the subunit fold. Genetic and biochemical evidence suggests a model of dimer dysequilibrium whereby SOD activity in missense heterozygotes is reduced through entrapment of wild-type subunits into unstable or enzymatically inactive heterodimers. This dramatic impairment of the activity of wild-type subunits in vivo has implications for our understanding of FALS and for possible therapeutic strategies.
Tyrosine phosphorylation accompanying the cellularization of the syncytial blastoderm of Drosophila.
Resumo:
At an early stage in embryogenesis, the Drosophila blastoderm is a syncytium in which approximately 6000 nuclei align under the plasma membrane. During the interphase of nuclear cycle 14, a wave of membrane formation descends from the blastoderm surface to enclose each nucleus in an intact cell membrane. We show by immunofluorescence microscopy that the membrane-formation process is closely accompanied in space and time by a wave of tyrosine phosphorylation, suggesting that one or more tyrosine kinases and phosphatases are active in the process.
Resumo:
The bithorax complex (BX-C) of Drosophila, one of two complexes that act as master regulators of the body plan of the fly, is included within a sequence of 338,234 bp (SEQ89E). This paper presents the strategy used in sequencing SEQ89E and an analysis of its open reading frames. The BX-C sequence (BXCALL) contains 314,895 bp obtained by deletion of putative genes that are located at each end of SEQ89E and appear to be functionally unrelated to the BX-C. Only 1.4% of BXCALL codes for the three homeodomain-containing proteins of the complex. Principal findings include a putative ABD-A protein (ABD-AII) larger than a previously known ABD-A protein and a putative glucose transporter-like gene (1521 bp) located at or near the bithoraxoid (bxd), infra-abdominal-2 (iab-2) boundary on the opposite strand relative to that of the homeobox-containing genes.
Resumo:
The bithorax complex (BX-C) of Drosophila, one of two complexes that act as master regulators of the body plan of the fly, has now been entirely sequenced and comprises approximately 315,000 bp, only 1.4% of which codes for protein. Analysis of this sequence reveals significantly overrepresented DNA motifs of unknown, as well as known, functions in the non-protein-coding portion of the sequence. The following types of motifs in that portion are analyzed: (i) concatamers of mono-, di-, and trinucleotides; (ii) tightly clustered hexanucleotides (spaced < or = 5 bases apart); (iii) direct and reverse repeats longer than 20 bp; and (iv) a number of motifs known from biochemical studies to play a role in the regulation of the BX-C. The hexanucleotide AGATAC is remarkably overrepresented and is surmised to play a role in chromosome pairing. The positions of sites of highly overrepresented motifs are plotted for those that occur at more than five sites in the sequence, when < 0.5 case is expected. Expected values are based on a third-order Markov chain, which is the optimal order for representing the BXCALL sequence.
Resumo:
Clones encoding pro-phenol oxidase [pro-PO; zymogen of phenol oxidase (monophenol, L-dopa:oxygen oxidoreductase, EC 1.14.18.1)] A1 were isolated from a lambda gt10 library that originated from Drosophila melanogaster strain Oregon-R male adults. The 2294 bp of the cDNA included a 13-bp 5'-noncoding region, a 2070-bp encoding open reading frame of 690 amino acids, and a 211-bp 3'-noncoding region. A hydrophobic NH2-terminal sequence for a signal peptide is absent in the protein. Furthermore, there are six potential N-glycosylation sites in the sequence, but no amino sugar was detected in the purified protein by amino acid analysis, indicating the lack of an N-linked sugar chain. The potential copper-binding sites, amino acids 200-248 and 359-414, are highly homologous to the corresponding sites of hemocyanin of the tarantula Eurypelma californicum, the horseshoe crab Limulus polyphemus, and the spiny lobster Panulirus interruptus. On the basis of the phylogenetic tree constructed by the neighbor-joining method, vertebrate tyrosinases and molluscan hemocyanins constitute one family, whereas pro-POs and arthropod hemocyanins group with another family. It seems, therefore, likely that pro-PO originates from a common ancestor with arthropod hemocyanins, independently to the vertebrate and microbial tyrosinases.