153 resultados para super-replication
Resumo:
Natural genes and proteins often contain tandemly repeated sequence motifs that dramatically increase physiological specificity and activity. Given the selective value of such repeats, it is likely that several different mechanisms have been responsible for their generation. One mechanism that has been shown to generate relatively long tandem repeats (in the kilobase range) is rolling circle replication. In this communication, we demonstrate that rolling circle synthesis in a simple enzymatic system can produce tandem repeats of monomers as short as 34 bp. In addition to suggesting possible origins for natural tandem repeats, these observations provide a facile means for constructing libraries of repeated motifs for use in "in vitro evolution" experiments designed to select molecules with defined biological or chemical properties.
Resumo:
Replication of the single-stranded DNA genome of geminiviruses occurs via a double-stranded intermediate that is subsequently used as a template for rolling-circle replication of the viral strand. Only one of the proteins encoded by the virus, here referred to as replication initiator protein (Rep protein), is indispensable for replication. We show that the Rep protein of tomato yellow leaf curl virus initiates viral-strand DNA synthesis by introducing a nick in the plus strand within the nonanucleotide 1TAATATT decreases 8AC, identical among all geminiviruses. After cleavage, the Rep protein remains bound to the 5' end of the cleaved strand. In addition, we show that the Rep protein has a joining activity, suggesting that it acts as a terminase, thus resolving the nascent viral single strand into genome-sized units.
Resumo:
The CDC47 gene was isolated by complementation of a cdc47 temperature-sensitive mutant in Saccharomyces cerevisiae and was shown to encode a predicted polypeptide, Cdc47, of 845 aa. Cdc47 belongs to the Cdc46/Mcm family of proteins, previously shown to be essential for initiation of DNA replication. Using indirect immunofluorescence microscopy and subcellular fractionation techniques, we show that Cdc47 undergoes cell cycle-regulated changes in its subcellular localization. At mitosis, Cdc47 enters the nucleus, where it remains until soon after the initiation of DNA replication, when it is rapidly exported back into the cytoplasm. Cdc47 protein levels do not vary with the cell cycle, but expression of CDC47 and nascent synthesis of Cdc47 occur late in the cell cycle, coinciding with mitosis. Together, these results show that Cdc47 is not only imported into the nucleus at the end of mitosis but is also exported back into the cytoplasm at the beginning of S phase. The observation that Cdc47 is exported from the nucleus at the beginning of S phase has important implications for how initiation of DNA replication is controlled.