207 resultados para nuclear localization sequence


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gephyrin is essential for both the postsynaptic localization of inhibitory neurotransmitter receptors in the central nervous system and the biosynthesis of the molybdenum cofactor (Moco) in different peripheral organs. Several alternatively spliced gephyrin transcripts have been identified in rat brain that differ in their 5′ coding regions. Here, we describe gephyrin splice variants that are differentially expressed in non-neuronal tissues and different regions of the adult mouse brain. Analysis of the murine gephyrin gene indicates a highly mosaic organization, with eight of its 29 exons corresponding to the alternatively spliced regions identified by cDNA sequencing. The N- and C-terminal domains of gephyrin encoded by exons 3–7 and 16–29, respectively, display sequence similarities to bacterial, invertebrate, and plant proteins involved in Moco biosynthesis, whereas the central exons 8, 13, and 14 encode motifs that may mediate oligomerization and tubulin binding. Our data are consistent with gephyrin having evolved from a Moco biosynthetic protein by insertion of protein interaction sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several mutations that cause severe forms of the human disease autosomal dominant retinitis pigmentosa cluster in the C-terminal region of rhodopsin. Recent studies have implicated the C-terminal domain of rhodopsin in its trafficking on specialized post-Golgi membranes to the rod outer segment of the photoreceptor cell. Here we used synthetic peptides as competitive inhibitors of rhodopsin trafficking in the frog retinal cell-free system to delineate the potential regulatory sequence within the C terminus of rhodopsin and model the effects of severe retinitis pigmentosa alleles on rhodopsin sorting. The rhodopsin C-terminal sequence QVS(A)PA is highly conserved among different species. Peptides that correspond to the C terminus of bovine (amino acids 324–348) and frog (amino acids 330–354) rhodopsin inhibited post-Golgi trafficking by 50% and 60%, respectively, and arrested newly synthesized rhodopsin in the trans-Golgi network. Peptides corresponding to the cytoplasmic loops of rhodopsin and other control peptides had no effect. When three naturally occurring mutations: Q344ter (lacking the last five amino acids QVAPA), V345M, and P347S were introduced into the frog C-terminal peptide, the inhibitory activity of the peptides was no longer detectable. These observations suggest that the amino acids QVS(A)PA comprise a signal that is recognized by specific factors in the trans-Golgi network. A lack of recognition of this sequence, because of mutations in the last five amino acids causing autosomal dominant retinitis pigmentosa, most likely results in abnormal post-Golgi membrane formation and in an aberrant subcellular localization of rhodopsin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultraspiracle (USP) is the invertebrate homologue of the mammalian retinoid X receptor (RXR). RXR plays a uniquely important role in differentiation, development, and homeostasis through its ability to serve as a heterodimeric partner to many other nuclear receptors. RXR is able to influence the activity of its partner receptors through the action of the ligand 9-cis retinoic acid. In contrast to RXR, USP has no known high-affinity ligand and is thought to be a silent component in the heterodimeric complex with partner receptors such as the ecdysone receptor. Here we report the 2.4-Å crystal structure of the USP ligand-binding domain. The structure shows that a conserved sequence motif found in dipteran and lepidopteran USPs, but not in mammalian RXRs, serves to lock USP in an inactive conformation. It also shows that USP has a large hydrophobic cavity, implying that there is almost certainly a natural ligand for USP. This cavity is larger than that seen previously for most other nuclear receptors. Intriguingly, this cavity has partial occupancy by a bound lipid, which is likely to resemble the natural ligand for USP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hepatocyte nuclear factor-4 (HNF4) regulates gene expression by binding to direct repeat motifs of the RG(G/T)TCA sequence separated by one nucleotide (DR1). In this study we demonstrate that endogenous HNF4 present in rat liver nuclear extracts, as well as purified recombinant HNF4, activates transcription from naked DNA templates containing multiple copies of the DR1 element linked to the adenovirus major late promoter. Recombinant HNF4 also activates transcription from the rat cellular retinol binding protein II (CRBPII) promoter in vitro. The region between –105 and –63 bp of this promoter is essential for HNF-mediated transactivation. The addition of a peptide containing the LXXLL motif abolished HNF4-mediated transactivation in vitro suggesting that LXXLL-containing protein factor(s) are involved in HNF4-mediated transactivation in rat liver nuclear extracts. This is the first report on transactivation by HNF4 in a cell-free system derived from rat liver nuclei.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ACTIVITY is a database on DNA/RNA site sequences with known activity magnitudes, measurement systems, sequence-activity relationships under fixed experimental conditions and procedures to adapt these relationships from one measurement system to another. This database deposits information on DNA/RNA affinities to proteins and cell nuclear extracts, cutting efficiencies, gene transcription activity, mRNA translation efficiencies, mutability and other biological activities of natural sites occurring within promoters, mRNA leaders, and other regulatory regions in pro- and eukaryotic genomes, their mutant forms and synthetic analogues. Since activity magnitudes are heavily system-dependent, the current version of ACTIVITY is supplemented by three novel sub-databases: (i) SYSTEM, measurement systems; (ii) KNOWLEDGE, sequence-activity relationships under fixed experimental conditions; and (iii) CROSS_TEST, procedures adapting a relationship from one measurement system to another. These databases are useful in molecular biology, pharmacogenetics, metabolic engineering, drug design and biotechnology. The databases can be queried using SRS and are available through the Web, http://wwwmgs.bionet.nsc.ru/systems/Activity/.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Viruses with RNA genomes often capture and redirect host cell components to assist in mechanisms particular to RNA-dependent RNA synthesis. The nidoviruses are an order of positive-stranded RNA viruses, comprising coronaviruses and arteriviruses, that employ a unique strategy of discontinuous transcription, producing a series of subgenomic mRNAs linking a 5′ leader to distal portions of the genome. For the prototype coronavirus mouse hepatitis virus (MHV), heterogeneous nuclear ribonucleoprotein (hnRNP) A1 has been shown to be able to bind in vitro to the negative strand of the intergenic sequence, a cis-acting element found in the leader RNA and preceding each downstream ORF in the genome. hnRNP A1 thus has been proposed as a host factor in MHV transcription. To test this hypothesis genetically, we initially constructed MHV mutants with a very high-affinity hnRNP A1 binding site inserted in place of, or adjacent to, an intergenic sequence in the MHV genome. This inserted hnRNP A1 binding site was not able to functionally replace, or enhance transcription from, the intergenic sequence. This finding led us to test more directly the role of hnRNP A1 by analysis of MHV replication and RNA synthesis in a murine cell line that does not express this protein. The cellular absence of hnRNP A1 had no detectable effect on the production of infectious virus, the synthesis of genomic RNA, or the quantity or quality of subgenomic mRNAs. These results strongly suggest that hnRNP A1 is not a required host factor for MHV discontinuous transcription or genome replication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influenza A virus pandemic of 1918–1919 resulted in an estimated 20–40 million deaths worldwide. The hemagglutinin and neuraminidase sequences of the 1918 virus were previously determined. We here report the sequence of the A/Brevig Mission/1/18 (H1N1) virus nonstructural (NS) segment encoding two proteins, NS1 and nuclear export protein. Phylogenetically, these genes appear to be close to the common ancestor of subsequent human and classical swine strain NS genes. Recently, the influenza A virus NS1 protein was shown to be a type I IFN antagonist that plays an important role in viral pathogenesis. By using the recently developed technique of generating influenza A viruses entirely from cloned cDNAs, the hypothesis that the 1918 virus NS1 gene played a role in virulence was tested in a mouse model. In a BSL3+ laboratory, viruses were generated that possessed either the 1918 NS1 gene alone or the entire 1918 NS segment in a background of influenza A/WSN/33 (H1N1), a mouse-adapted virus derived from a human influenza strain first isolated in 1933. These 1918 NS viruses replicated well in tissue culture but were attenuated in mice as compared with the isogenic control viruses. This attenuation in mice may be related to the human origin of the 1918 NS1 gene. These results suggest that interaction of the NS1 protein with host-cell factors plays a significant role in viral pathogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Crithidia fasciculata RNH1 gene encodes an RNase H, an enzyme that specifically degrades the RNA strand of RNA–DNA hybrids. The RNH1 gene is contained within an open reading frame (ORF) predicted to encode a protein of 53.7 kDa. Previous work has shown that RNH1 expresses two proteins: a 38 kDa protein and a 45 kDa protein which is enriched in kinetoplast extracts. Epitope tagging of the C-terminus of the RNH1 gene results in localization of the protein to both the kinetoplast and the nucleus. Translation of the ORF beginning at the second in-frame methionine codon predicts a protein of 38 kDa. Insertion of two tandem stop codons between the first ATG codon and the second in-frame ATG codon of the ORF results in expression of only the 38 kDa protein and the protein localizes specifically to the nucleus. Mutation of the second methionine codon to a valine codon prevents expression of the 38 kDa protein and results in exclusive production of the 45 kDa protein and localization of the protein only in the kinetoplast. These results suggest that the kinetoplast enzyme results from processing of the full-length 53.7 kDa protein. The nuclear enzyme appears to result from translation initiation at the second in-frame ATG codon. This is the first example in trypanosomatids of the production of nuclear and mitochondrial isoforms of a protein from a single gene and is the only eukaryotic gene in the RNase HI gene family shown to encode a mitochondrial RNase H.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear speckles (speckles) represent a distinct nuclear compartment within the interchromatin space and are enriched in splicing factors. They have been shown to serve neighboring active genes as a reservoir of these factors. In this study, we show that, in HeLa cells, the (pre)spliceosomal assembly on precursor mRNA (pre-mRNA) is associated with the speckles. For this purpose, we used microinjection of splicing competent and mutant adenovirus pre-mRNAs with differential splicing factor binding, which form different (pre)spliceosomal complexes and followed their sites of accumulation. Splicing competent pre-mRNAs are rapidly targeted into the speckles, but the targeting is temperature-dependent. The polypyrimidine tract sequence is required for targeting, but, in itself, is not sufficient. The downstream flanking sequences are particularly important for the targeting of the mutant pre-mRNAs into the speckles. In supportive experiments, the behavior of the speckles was followed after the microinjection of antisense deoxyoligoribonucleotides complementary to the specific domains of snRNAs. Under these latter conditions prespliceosomal complexes are formed on endogenous pre-mRNAs. We conclude that the (pre)spliceosomal complexes on microinjected pre-mRNA are formed inside the speckles. Their targeting into and accumulation in the speckles is a result of the cumulative loading of splicing factors to the pre-mRNA and the complexes formed give rise to the speckled pattern observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcription-coupled repair (TCR) plays an important role in removing DNA damage from actively transcribed genes. It has been speculated that TCR is the most important mechanism for repairing DNA damage in non-dividing cells such as neurons. Therefore, abnormal TCR may contribute to the development of many age-related and neurodegenerative diseases. However, the molecular mechanism of TCR is not well understood. Oligonucleotide DNA triplex formation provides an ideal system to dissect the molecular mechanism of TCR since triplexes can be formed in a sequence-specific manner to inhibit transcription of target genes. We have recently studied the molecular mechanism of triplex-forming oligonucleotide (TFO)-mediated TCR in HeLa nuclear extracts. Using plasmid constructs we demonstrate that the level of TFO-mediated DNA repair activity is directly correlated with the level of transcription of the plasmid in HeLa nuclear extracts. TFO-mediated DNA repair activity was further linked with transcription since the presence of rNTPs in the reaction was essential for AG30-mediated DNA repair activity in HeLa nuclear extracts. The involvement of individual components, including TFIID, TFIIH, RNA polymerase II and xeroderma pigmentosum group A (XPA), in the triplex-mediated TCR process was demonstrated in HeLa nuclear extracts using immunodepletion assays. Importantly, our studies also demonstrated that XPC, a component involved in global genome DNA repair, is involved in the AG30-mediated DNA repair process. The results obtained in this study provide an important new understanding of the molecular mechanisms involved in the TCR process in mammalian cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spectrum of immunogenic epitopes presented by the H2-IAb MHC class II molecule to CD4+ T cells has been defined for two different (clade B and clade D) HIV envelope (gp140) glycoproteins. Hybridoma T cell lines were generated from mice immunized by a sequential prime and boost regime with DNA, recombinant vaccinia viruses, and protein. The epitopes recognized by reactive T cell hybridomas then were characterized with overlapping peptides synthesized to span the entire gp140 sequence. Evidence of clonality also was assessed with antibodies to T cell receptor Vα and Vβ chains. A total of 80 unique clonotypes were characterized from six individual mice. Immunogenic peptides were identified within only four regions of the HIV envelope. These epitope hotspots comprised relatively short sequences (≈20–80 aa in length) that were generally bordered by regions of heavy glycosylation. Analysis in the context of the gp120 crystal structure showed a pattern of uniform distribution to exposed, nonhelical strands of the protein. A likely explanation is that the physical location of the peptide within the native protein leads to differential antigen processing and consequent epitope selection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apoplastic α-glucosidases occur widely in plants but their function is unknown because appropriate substrates in the apoplast have not been identified. Arabidopsis contains at least three α-glucosidase genes; Aglu-1 and Aglu-3 are sequenced and Aglu-2 is known from six expressed sequence tags. Antibodies raised to a portion of Aglu-1 expressed in Escherichia coli recognize two proteins of 96 and 81 kD, respectively, in vegetative tissues of Arabidopsis, broccoli (Brassica oleracea L.), and mustard (Brassica napus L.). The acidic α-glucosidase activity from broccoli flower buds was purified using concanavalin A and ion-exchange chromatography. Two active fractions were resolved and both contained a 96-kD immunoreactive polypeptide. The N-terminal sequence from the 96-kD broccoli α-glucosidase indicated that it corresponds to the Arabidopsis Aglu-2 gene and that approximately 15 kD of the predicted N terminus was cleaved. The 81-kD protein was more abundant than the 96-kD protein, but it was not active with 4-methylumbelliferyl-α-d-glucopyranoside as the substrate and it did not bind to concanavalin A. In situ activity staining using 5-bromo-4-chloro-3-indolyl-α-d-glucopyranoside revealed that the acidic α-glucosidase activity is predominantly located in the outer cortex of broccoli stems and in vascular tissue, especially in leaf traces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four cDNAs encoding phosphoribosyl diphosphate (PRPP) synthase were isolated from a spinach (Spinacia oleracea) cDNA library by complementation of an Escherichia coli Δprs mutation. The four gene products produced PRPP in vitro from ATP and ribose-5-phosphate. Two of the enzymes (isozymes 1 and 2) required inorganic phosphate for activity, whereas the others were phosphate independent. PRPP synthase isozymes 2 and 3 contained 76 and 87 amino acid extensions, respectively, at their N-terminal ends in comparison with other PRPP synthases. Isozyme 2 was synthesized in vitro and shown to be imported and processed by pea (Pisum sativum) chloroplasts. Amino acid sequence analysis indicated that isozyme 3 may be transported to mitochondria and that isozyme 4 may be located in the cytosol. The deduced amino acid sequences of isozymes 1 and 2 and isozymes 3 and 4 were 88% and 75% identical, respectively. In contrast, the amino acid identities of PRPP synthase isozyme 1 or 2 with 3 or 4 was modest (22%–25%), but the sequence motifs for binding of PRPP and divalent cation-nucleotide were identified in all four sequences. The results indicate that PRPP synthase isozymes 3 and 4 belong to a new class of PRPP synthases that may be specific to plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The maize genome is replete with chromosomal duplications and repetitive DNA. The duplications resulted from an ancient polyploid event that occurred over 11 million years ago. Based on DNA sequence data, the polyploid event occurred after the divergence between sorghum and maize, and hence the polyploid event explains some of the difference in DNA content between these two species. Genomic rearrangement and diploidization followed the polyploid event. Most of the repetitive DNA in the maize genome is retrotransposable elements, and they comprise 50% of the genome. Retrotransposon multiplication has been relatively recent—within the last 5–6 million years—suggesting that the proliferation of retrotransposons has also contributed to differences in DNA content between sorghum and maize. There are still unanswered questions about repetitive DNA, including the distribution of repetitive DNA throughout the genome, the relative impacts of retrotransposons and chromosomal duplication in plant genome evolution, and the hypothesized correlation of duplication events with transposition. Population genetic processes also affect the evolution of genomes. We discuss how centromeric genes should, in theory, contain less genetic diversity than noncentromeric genes. In addition, studies of diversity in the wild relatives of maize indicate that different genes have different histories and also show that domestication and intensive breeding have had heterogeneous effects on genetic diversity across genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

mRNA localization is a complex pathway. Besides mRNA sorting per se, this process includes aspects of regulated translation. It requires protein factors that interact with defined sequences (or sequence motifs) of the transcript, and the protein/RNA complexes are finally guided along the cytoskeleton to their ultimate destinations. The mRNA encoding the vasopressin (VP) precursor protein is localized to the nerve cell processes in vivo and in primary cultured nerve cells. Sorting of VP transcripts to dendrites is mediated by the last 395 nucleotides of the mRNA, the dendritic localizer sequence, and it depends on intact microtubules. In vitro interaction studies with cytosolic extracts demonstrated specific binding of a protein, enriched in nerve cell tissues, to the radiolabeled dendritic localizer sequence probe. Biochemical purification revealed that this protein is the multifunctional poly(A)-binding protein (PABP). It is well known for its ability to bind with high affinity to poly(A) tails of mRNAs, prerequisite for mRNA stabilization and stimulation of translational initiation, respectively. With lower affinities, PABP can also associate with non-poly(A) sequences. The physiological consequences of these PABP/RNA interactions are far from clear but may include functions such as translational silencing. Presumably, the translational state of mRNAs subject to dendritic sorting is influenced by external stimuli. PABP thus could be a component required to regulate local synthesis of the VP precursor and possibly of other proteins.