214 resultados para Tyrosine kinase inhibitors


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The hepatocyte growth factor (HGF/SF) receptor, Met, regulates mitogenesis, motility, and morphogenesis in a cell type-dependent fashion. Activation of Met via autocrine, paracrine, or mutational mechanisms can lead to tumorigenesis and metastasis and numerous studies have linked inappropriate expression of this ligand-receptor pair to most types of human solid tumors. To prepare mAbs to human HGF/SF, mice were immunized with native and denatured preparations of the ligand. Recloned mAbs were tested in vitro for blocking activity against scattering and branching morphogenesis. Our results show that no single mAb was capable of neutralizing the in vitro activity of HGF/SF, and that the ligand possesses a minimum of three epitopes that must be blocked to prevent Met tyrosine kinase activation. In vivo, the neutralizing mAb combination inhibited s.c. growth in athymic nu/nu mice of tumors dependent on an autocrine Met-HGF/SF loop. Importantly, growth of human glioblastoma multiforme xenografts expressing Met and HGF/SF were markedly reduced in the presence of HGF/SF-neutralizing mAbs. These results suggest interrupting autocrine and/or paracrine Met-HGF/SF signaling in tumors dependent on this pathway is a possible intervention strategy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Auxin is transported across the plasma membrane of plant cells by diffusion and by two carriers operating in opposite directions, the influx and efflux carriers. Both carriers most likely play an important role in controlling auxin concentration and distribution in plants but little is known regarding their regulation. We describe the influence of modifications of the transmembrane pH gradient and the effect of agents interfering with protein synthesis, protein traffic, and protein phosphorylation on the activity of the auxin carriers in suspension-cultured tobacco (Nicotiana tabacum L.) cells. Carrier-mediated influx and efflux were monitored independently by measuring the accumulation of [14C]2,4-dichlorophenoxyacetic acid and [3H]naphthylacetic acid, respectively. The activity of the influx carrier decreased on increasing external pH and on decreasing internal pH, whereas that of the efflux carrier was only impaired on internal acidification. The efflux carrier activity was inhibited by cycloheximide, brefeldin A, and the protein kinase inhibitors staurosporine and K252a, as shown by the increased capability of treated cells to accumulate [3H]naphthylacetic acid. Kinetics and reversibility of the effect of brefeldin A were consistent with one or several components of the efflux system being turned over at the plasma membrane with a half-time of less than 10 min. Inhibition of efflux by protein kinase inhibitors suggested that protein phosphorylation was essential to sustain the activity of the efflux carrier. On the contrary, the pharmacological agents used in this study failed to inhibit [14C]2,4-dichlorophenoxyacetic acid accumulation, suggesting that rapidly turned-over proteins or proteins activated by phosphorylation are not essential to carrier-mediated auxin influx. Our data support the idea that the efflux carrier in plants constitutes a complex system regulated at multiple levels, in marked contrast with the influx carrier. Physiological implications of the kinetic features of this regulation are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We recently have introduced the term vasculogenic mimicry to describe the unique ability of aggressive melanoma tumor cells to form tubular structures and patterned networks in three-dimensional culture, which “mimics” embryonic vasculogenic networks formed by differentiating endothelial cells. In the current study, we address the biological significance of several endothelial-associated molecules (revealed by microarray analysis) with respect to expression and function in highly aggressive and poorly aggressive human cutaneous melanoma cell lines (established from the same patient). In a comparative analysis, CD31 was not expressed by any of the melanoma cell lines, whereas TIE-1 (tyrosine kinase with Ig and epidermal growth factor homology domains-1) was strongly expressed in the highly aggressive tumor cells with a low level of expression in one of the poorly aggressive cell lines. Vascular endothelial (VE)-cadherin was exclusively expressed by highly aggressive melanoma cells and was undetectable in the poorly aggressive tumor cells, suggesting the possibility of a vasculogenic switch. Down-regulation of VE-cadherin expression in the aggressive melanoma cells abrogated their ability to form vasculogenic networks and directly tested the hypothesis that VE-cadherin is critical in melanoma vasculogenic mimicry. These results highlight the plasticity of aggressive melanoma cells and call into question their possible genetic reversion to an embryonic phenotype. This finding could pose a significant clinical challenge in targeting tumor cells that may masquerade as circulating endothelial cells or other embryonic-like stem cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neurotrophins can directly modulate the function of diverse types of central nervous system synapses. Brain-derived neurotrophic factor (BDNF) might be released by nociceptors onto spinal neurons and mediate central sensitization associated with chronic pain. We have studied the role of BDNF and neurotrophin-4 (NT-4), both ligands of the trkB tyrosine kinase receptor, in synaptic transmission and reflex plasticity in the mouse spinal cord. We used an in vitro spinal cord preparation to measure monosynaptic and polysynaptic reflexes evoked by primary afferents in BDNF- and NT-4-deficient mice. In situ hybridization studies show that both these neurotrophins are synthesized by sensory neurons, and NT-4, but not BDNF, also is expressed by spinal neurons. BDNF null mutants display selective deficits in the ventral root potential (VRP) evoked by stimulating nociceptive primary afferents whereas the non-nociceptive portion of the VRP remained unaltered. In addition, activity-dependent plasticity of the VRP evoked by repetitive (1 Hz) stimulation of nociceptive primary afferents (termed wind-up) was substantially reduced in BDNF-deficient mice. This plasticity also was reduced in a reversible manner by the protein kinase inhibitor K252a. Although the trkB ligand NT-4 is normally present, reflex properties in NT-4 null mutant mice were normal. Pharmacological studies also indicated that spinal N-methyl-d-aspartate receptor function was unaltered in BDNF-deficient mice. Using immunocytochemistry for markers of nociceptive neurons we found no evidence that their number or connectivity was substantially altered in BDNF-deficient mice. Our data therefore are consistent with a direct role for presynaptic BDNF release from sensory neurons in the modulation of pain-related neurotransmission.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is a growing body of evidence, including data from human genetic and T-cell receptor function studies, which implicate a zeta-associated protein of M(r) 70,000 (Zap-70) as a critical protein tyrosine kinase in T-cell activation and development. During T-cell activation, Zap-70 becomes associated via its src homology type 2 (SH2) domains with tyrosine-phosphorylated immune-receptor tyrosine activating motif (ITAM) sequences in the cytoplasmic zeta chain of the T-cell receptor. An intriguing conundrum is how Zap-70 is catalytically activated for downstream phosphorylation events. To address this question, we have used purified Zap-70, tyrosine phosphorylated glutathione S-transferase (GST)-Zeta, and GST-Zeta-1 cytoplasmic domains, and various forms of ITAM-containing peptides to see what effect binding of zeta had upon Zap-70 tyrosine kinase activity. The catalytic activity of Zap-70 with respect to autophosphorylation increased approximately 5-fold in the presence of 125 nM phosphorylated GST-Zeta or GST-Zeta-1 cytoplasmic domain. A 20-fold activity increase was observed for phosphorylation of an exogenous substrate. Both activity increases showed a GST-Zeta concentration dependence. The increase in activity was not produced with nonphosphorylated GST-Zeta, phosphorylated zeta, or phosphorylated ITAM-containing peptides. The increase in Zap-70 activity was SH2 mediated and was inhibited by phenylphosphate, Zap-70 SH2, and an antibody specific for Zap-70 SH2 domains. Since GST-Zeta and GST-Zeta-1 exist as dimers, the data suggest Zap-70 is activated upon binding a dimeric form of phosphorylated zeta and not by peptide fragments containing a single phosphorylated ITAM. Taken together, these data indicate that the catalytic activity of Zap-70 is most likely activated by a trans-phosphorylation mechanism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Angiotensin II (AII), acting via its G-protein linked receptor, is an important regulator of cardiac, vascular, and renal function. Following injection of AII into rats, we find that there is also a rapid tyrosine phosphorylation of the major insulin receptor substrates 1 and 2 (IRS-1 and IRS-2) in the heart. This phenomenon appears to involve JAK2 tyrosine kinase, which associates with the AT1 receptor and IRS-1/IRS-2 after AII stimulation. AII-induced phosphorylation leads to binding of phosphatidylinositol 3-kinase (PI 3-kinase) to IRS-1 and IRS-2; however, in contrast to other ligands, AII injection results in an acute inhibition of both basal and insulin-stimulated PI 3-kinase activity. The latter occurs without any reduction in insulin receptor or IRS phosphorylation or in the interaction of the p85 and p110 subunits of PI 3-kinase with each other or with IRS-1/IRS-2. These effects of AII are inhibited by AT1 receptor antagonists. Thus, there is direct cross-talk between insulin and AII signaling pathways at the level of both tyrosine phosphorylation and PI 3-kinase activation. These interactions may play an important role in the association of insulin resistance, hypertension, and cardiovascular disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Osteoclastogenesis is a complex process that is facilitated by bone marrow stromal cells (SCs). To determine if SCs are an absolute requirement for the differentiation of human hematopoietic precursors into fully mature, osteoclasts (OCs), CD34+ cells were mobilized into the peripheral circulation with granulocyte colony-stimulating factor, harvested by leukapheresis, and purified by magnetic-activated cell sorting. This procedure yields a population of CD34+ cells that does not contain SC precursors, as assessed by the lack of expression of the SC antigen Stro-1, and that differentiates only into hematopoietic cells. We found that CD34+, Stro-1- cells cultured with a combination of granulocyte/macrophage colony-stimulating factor, interleukin 1, and interleukin 3 generated cells that fulfill current criteria for the characterization of OCs, including multinucleation, presence of tartrate-resistant acid phosphatase, and expression of the calcitonin and vitronectin receptors and of pp60c-src tyrosine kinase. These OCs also expressed mRNA for the noninserted isoform of the calcitonin receptor and excavated characteristic resorption pits in devitalized bone slices. These data demonstrate that accessory SCs are not essential for human osteoclastogenesis and that granulocyte colony-stimulating factor treatment mobilizes OC precursors into the peripheral circulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The hippocampus and septum play central roles in one of the most important spheres of brain function: learning and memory. Although their topographic connections have been known for two decades and topography may be critical for cognitive functions, the basis for hippocamposeptal topographic projection is unknown. We now report for the first time that Elf-1, a membrane-bound eph family ligand, is a candidate molecular tag for the genesis of the hippocamposeptal topographic projection. Elf-1 is expressed in an increasing gradient from dorsal to ventral septum. Furthermore, Elf-1 selectively allows growth of neurites from topographically appropriate lateral hippocampal neurons, while inhibiting neurite outgrowth by medial hippocampal neurons. Complementary to the expression of Elf-1, an eph family receptor, Bsk, is expressed in the hippocampus in a lateral to medial gradient, consistent with a function as a receptor for Elf-1. Further, Elf-1 specifically bound Bsk, eliciting tyrosine kinase activity. We conclude that the Elf-1/Bsk ligand-receptor pair exhibits traits of a chemoaffinity system for the organization of hippocamposeptal topographic projections.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Development of the nematode egg-laying system requires the formation of a connection between the uterine lumen and the developing vulval lumen, thus allowing a passage for eggs and sperm. This relatively simple process serves as a model for certain aspects of organogenesis. Such a connection demands that cells in both tissues become specialized to participate in the connection, and that the specialized cells are brought in register. A single cell, the anchor cell, acts to induce and to organize specialization of the epidermal and uterine epithelia, and registrates these tissues. The inductions act via evolutionarily conserved intercellular signaling pathways. The anchor cell induces the vulva from ventral epithelial cells via the LIN-3 growth factor and LET-23 transmembrane tyrosine kinase. It then induces surrounding uterine intermediate precursors via the receptor LIN-12, a founding member of the Notch family of receptors. Both signaling pathways are used multiple times during development of Caenorhabditis elegans. The outcome of the signaling is context-dependent. Both inductions are reciprocated. After the anchor cell has induced the vulva, it stretches toward the induced vulval cells. After the anchor cell has induced specialized uterine intermediate precursor cells, it fuses with a subset of their progeny.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Self renewal of normal erythroid progenitors is induced by the receptor tyrosine kinase c-ErbB, whereas other receptors (c-Kit/Epo-R) regulate erythroid differentiation. To address possible mechanisms that could explain this selective activity of c-ErbB, we analyzed the ability of these receptors to activate the different members of the Stat transcription factor family. Ligand activation of c-ErbB induced the tyrosine phosphorylation, DNA-binding, and reporter gene transcription of Stat 5b in erythroblasts. In contrast, ligand activation of c-Kit was unable to induce any of these effects in the same cells. Activation of the erythropoietin receptor caused specific DNA-binding of Stat 5b, but failed to induce reporter gene transcription. These biochemical findings correlate perfectly with the selective ability of c-ErbB to cause sustained self renewal in erythroid progenitors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Overexpression of the Neu/ErbB-2 receptor tyrosine kinase has been implicated in the genesis of human breast cancer. Indeed, expression of either activated or wild-type neu in the mammary epithelium of transgenic mice results in the induction of mammary tumors. Previously, we have shown that many of the mammary tumors arising in transgenic mice expressing wild-type neu occur through somatic activating mutations within the neu transgene itself. Here we demonstrate that these mutations promote dimerization of the Neu receptor through the formation of disulfide bonds, resulting in its constitutive activation. To explore the role of conserved cysteine residues within the region deleted in these altered Neu proteins, we examined the transforming potential of a series of Neu receptors in which the individual cysteine residues were mutated. These analyses indicated that mutation of certain cysteine residues resulted in the oncogenic activation of Neu. The increased transforming activity displayed by the altered receptors correlated with constitutive dimerization that occurred in a disulfide bond-dependent manner. We further demonstrate that addition of 2-mercaptoethanol to the culture medium interfered with the specific transforming activity of the mutant Neu receptors. These observations suggest that oncogenic activation of Neu results from constitutive disulfide bond-dependent dimerization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A constitutively active form of fibroblast growth factor 2 (FGFR2) was identified in rat osteosarcoma (ROS) cells by an expression cloning strategy. Unlike other tyrosine kinase receptors activated by N-terminal truncation in tumors, this receptor, FGFR2-ROS, contains an altered C terminus generated from chromosomal rearrangement with a novel gene, designated FGFR activating gene 1 (FRAG1). While the removal of the C terminus slightly activates FGFR2, the presence of the FRAG1 sequence drastically stimulates the transforming activity and autophosphorylation of the receptor. FGFR2-ROS is expressed as a unusually large protein and is highly phosphorylated in NIH 3T3 transfectants. FRAG1 is ubiquitously expressed and encodes a predicted protein of 28 kDa lacking significant structural similarity to known proteins. Epitope-tagged FRAG1 protein showed a perinuclear localization by immunofluorescence staining. The highly activated state of FGFR2-ROS appears to be attributed to constitutive dimer formation and higher phosphorylation level as well as possibly altered subcellular localization. These results indicate a unique mechanism of receptor activation by a C terminus alteration through a chromosomal fusion with FRAG1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cell adhesion has a fundamental role in the proliferation and motility of normal cells and the metastasis of tumor cells. To identify signaling pathways activated by the adherence of tumor cells, we analyzed the tyrosine phosphorylation of proteins in mouse melanoma cells before and after attachment to substrata. We discovered that cellular adherence activated the protein-tyrosine kinase of the cell surface receptor Met, whose ligand is hepatocyte growth factor and scatter factor. The activation was exceedingly prompt, affected the great majority of Met in the cells, persisted so long as the cells remained adherent, and was rapidly reversed as soon as the cells were detached from substrata. Activation of Met required that cells be adherent but not that they spread on the substratum, and it occurred in the absence of any apparent ligand for the receptor. Ligand-independent activation of Met occurred in several varieties of tumor cells but not in normal endothelial cells that express the receptor. The activation of Met described here may represent a means by which cells respond to mechanical as opposed to biochemical stimuli.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hepatocyte growth factor (HGF), also known as scatter factor, is a powerful motogen, mitogen, and morphogen produced by cells of mesodermal origin, acting on epithelial and endothelial cells. Its receptor is the tyrosine kinase encoded by the c-MET protooncogene. We show that the HGF receptor is expressed by human primary osteoclasts, by osteoclast-like cell lines, and by osteoblasts. In both cell lineages, HGF stimulation triggers the receptor kinase activity and autophosphorylation. In osteoclasts, HGF receptor activation is followed by increase in intracellular Ca2+ concentration and by activation of the pp60c-Src kinase. HGF induces changes in osteoclast shape and stimulates chemotactic migration and DNA replication. Osteoblasts respond to HGF by entering the cell cycle, as indicated by stimulation of DNA synthesis. Interestingly, osteoclasts were found to synthesize and secrete biologically active HGF. These data strongly suggest the possibility of an autocrine regulation of the osteoclast by HGF and a paracrine regulation of the osteoblast by the HGF produced by the osteoclast.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Crouzon syndrome is an autosomal dominant condition primarily characterized by craniosynostosis. This syndrome has been associated with a variety of amino acid point mutations in the extracellular domain of fibroblast growth factor receptor 2 (FGFR2). FGFR2/Neu chimeras were generated by substituting the extracellular domain of Neu with that of FGFR2 containing the following Crouzon mutations: Tyr-340-->His; Cys-342-->Tyr; Cys-342-->Arg; Cys-342-->Ser; Ser-354-->Cys: and delta17 (deletion of amino acids 345-361). Each of the mutant chimeric FGFR2/Neu constructs stimulated focus formation in NIH 3T3 cells, indicating that Crouzon mutations can stimulate signal transduction through a heterologous receptor tyrosine kinase. In vitro kinase assay results indicate that FGFR2 receptors containing Crouzon mutations have increased tyrosine kinase activity and, when analyzed under nonreducing conditions, exhibited disulfide-bonded dimers. Thus the human developmental abnormality Crouzon syndrome arises from constitutive activation of FGFR2 due to aberrant intermolecular disulfide-bonding. These results together with our earlier observation that achondroplasia results from constitutive activation of the related receptor FGFR3, leads to the prediction that other malformation syndromes attributed to FGFRs, such as Pfeiffer syndrome and Thanatophoric dysplasia, also arise from constitutive receptor activation.