182 resultados para OF-FUNCTION MUTATIONS
Resumo:
One of the fundamental questions concerning expression and function of dimeric enzymes involves the impact of naturally occurring mutations on subunit assembly and heterodimer activity. This question is of particular interest for the human enzyme galactose-l-phosphate uridylyl-transferase (GALT), impairment of which results in the inherited metabolic disorder galactosemia, because many if not most patients studied to date are compound heterozygotes rather than true molecular homozygotes. Furthermore, the broad range of phenotypic severity observed in these patients raises the possibility that allelic combination, not just allelic constitution, may play some role in determining outcome. In the work described herein, we have selected two distinct naturally occurring null mutations of GALT, Q188R and R333W, and asked the questions (i) what are the impacts of these mutations on subunit assembly, and (ii) if heterodimers do form, are they active? To answer these questions, we have established a yeast system for the coexpression of epitope-tagged alleles of human GALT and investigated both the extent of specific GALT subunit interactions and the activity of defined heterodimer pools. We have found that both homodimers and heterodimers do form involving each of the mutant subunits tested and that both heterodimer pools retain substantial enzymatic activity. These results are significant not only in terms of their implications for furthering our understanding of galactosemia and GALT holoenzyme structure-function relationships but also because the system described may serve as a model for similar studies of other complexes composed of multiple subunits.
Resumo:
We present a systematic approach to minimizing the Z-domain of protein A, a three-helix bundle (59 residues total) that binds tightly (Kd = 10 nM) to the Fc portion of an immunoglobin IgG1. Despite the fact that all the contacts seen in the x-ray structure of the complex with the IgG are derived from residues in the first two helices, when helix 3 is deleted, binding affinity is reduced > 10(5)-fold (Kd > 1 mM). By using structure-based design and phage display methods, we have iteratively improved the stability and binding affinity for a two-helix derivative, 33 residues in length, such that it binds IgG1, with a Kd of 43 nM. This was accomplished by stepwise selection of random mutations from three regions of the truncated Z-peptide: the 4 hydrophobic residues from helix 1 and helix 2 that contacted helix 3 (the exoface), followed by 5 residues between helix 1 and helix 2 (the intraface), and lastly by 19 residues at or near the interface that interacts with Fc (the interface). As selected mutations from each region were compiled (12 in total), they led to progressive increases in affinity for IgG, and concomitant increases in alpha-helical content reflecting increased stabilization of the two-helix scaffold. Thus, by sequential increases in the stability of the structure and improvements in the quality of the intermolecular contacts, one can reduce larger binding domains to smaller ones. Such mini-protein binding domains are more amenable to synthetic chemistry and thus may be useful starting points for the design of smaller organic mimics. Smaller binding motifs also provide simplified and more tractable models for understanding determinants of protein function and stability.
Resumo:
We describe a transgenic mouse line carrying the cre transgene under the control of the adenovirus EIIa promoter that targets expression of the Cre recombinase to the early mouse embryo. To assess the ability of this recombinase to excise loxP-flanked DNA sequences at early stages of development, we bred EIIa-cre transgenic mice to two different mouse lines carrying loxP-flanked target sequences: (i) a strain with a single gene-targeted neomycin resistance gene flanked by 1oxP sites and (ii) a transgenic line carrying multiple transgene copies with internal loxP sites. Mating either of these loxP-carrying mouse lines to EIIa-cre mice resulted in first generation progeny in which the loxP-flanked sequences had been efficiently deleted from all tissues tested, including the germ cells. Interbreeding of these first generation progeny resulted in efficient germ-line transmission of the deletion to subsequent generations. These results demonstrate a method by which loxP-flanked DNA sequences can be efficiently deleted in the early mouse embryo. Potential applications of this approach are discussed, including reduction of multicopy transgene loci to produce single-copy transgenic lines and introduction of a variety of subtle mutations into the line.
Resumo:
The expression of the jellyfish green fluorescent protein (GFP) in plants was analyzed by transient expression in protoplasts from Nicotiana tabacum, Arabidopsis thaliana, Hordeum vulgare, and Zea mays. Expression of GFP was only observed with a mutated cDNA, from which a recently described cryptic splice site had been removed. However, detectable levels of green fluorescence were only emitted from a small number of protoplasts. Therefore, other mutations in the GFP cDNA leading to single-amino acid exchanges in the chromophore region, which had been previously studied in Escherichia coli, were tested in order to improve the sensitivity of this marker protein. Of the mutations tested so far, the exchange of GFP amino acid tyrosine 66 to histidine (Y66H) led to detection of blue fluorescence in plant protoplasts, while the exchange of amino acid serine 65 to cysteine (S65C) and threonine (S65T) increased the intensity of green fluorescence drastically, thereby significantly raising the detection level for GFP. For GFP S65C, the detectable number of green fluorescing tobacco (BY-2) protoplasts was raised up to 19-fold, while the fluorimetricly determined fluorescence was raised by at least 2 orders of magnitude.
Resumo:
Cyanobacteria are important contributors to global photosynthesis in both marine and terrestrial environments. Quantitative data are presented on UV-B-induced damage to the major cyanobacterial photosynthetic light harvesting complex, the phycobilisome, and to each of its constituent phycobiliproteins. The photodestruction quantum yield, phi295 nm, for the phycobiliproteins is high (approximately 10(-3), as compared with approximately 10(-7) for visible light). Energy transfer on a picosecond time scale does not compete with photodestruction. Photodamage to phycobilisomes in vitro and in living cells is amplified by causing dissociation and loss of function of the complex. In photosynthetic organisms, UV-B damage to light-harvesting complexes may significantly exceed that to DNA.
Resumo:
Dominant mutations of the SOD1 gene encoding Cu,Zn superoxide dismutase have been found in members of certain families with familial amyotrophic lateral sclerosis (ALS). To better understand the contribution of SOD1 mutations in the pathogenesis of familial ALS, we developed transgenic mice expressing one of the mutations found in familial ALS. These animals display clinical and pathological features closely resembling human ALS. Early changes observed in these animals were intra-axonal and dendritic vacuoles due to dilatation of the endoplasmic reticulum and vacuolar degeneration of mitochondria. We have reported that the Golgi apparatus of spinal cord motor neurons in patients with sporadic ALS is fragmented and atrophic. In this study we show that spinal cord motor neurons of transgenic mice for an SOD1 mutation display a lesion of the Golgi apparatus identical to that found in humans with sporadic ALS. In these mice, the stacks of the cisternae of the fragmented Golgi apparatus are shorter than in the normal organelle, and there is a reduction in Golgi-associated vesicles and adjacent cisternae of the rough endoplasmic reticulum. Furthermore, the fragmentation of the Golgi apparatus occurs in an early, presymptomatic stage and usually precedes the development of the vacuolar changes. Transgenic mice overexpressing the wild-type human superoxide dismutase are normal. In familial ALS, an early lesion of the Golgi apparatus of motor neurons may have adverse functional effects, because newly synthesized proteins destined for fast axoplasmic transport pass through the Golgi apparatus.
Resumo:
Inherited defects in the gene for methylmalonyl-CoA mutase (EC 5.4.99.2) result in the mut forms of methylmalonic aciduria. mut- mutations lead to the absence of detectable mutase activity and are not corrected by excess cobalamin, whereas mut- mutations exhibit residual activity when exposed to excess cobalamin. Many of the mutations that cause methylmalonic aciduria in humans affect residues in the C-terminal region of the methylmalonyl-CoA mutase. This portion of the methylmalonyl-CoA mutase sequence can be aligned with regions in other B12 (cobalamin)-dependent enzymes, including the C-terminal portion of the cobalamin-binding region of methionine synthase. The alignments allow the mutations of human methylmalonyl-CoA mutase to be mapped onto the structure of the cobalamin-binding fragment of methionine synthase from Escherichia coli (EC 2.1.1.13), which has recently been determined by x-ray crystallography. In this structure, the dimethylbenzimidazole ligand to the cobalt in free cobalamin has been displaced by a histidine ligand, and the dimethylbenzimidazole nucleotide "tail" is thrust into a deep hydrophobic pocket in the protein. Previously identified mut0 and mut- mutations (Gly-623 --> Arg, Gly-626 --> Cys, and Gly-648 --> Asp) of the mutase are predicted to interfere with the structure and/or stability of the loop that carries His-627, the presumed lower axial ligand to the cobalt of adenosylcobalamin. Two mutants that lead to severe impairment (mut0) are Gly-630 --> Glu and Gly-703 --> Arg, which map to the binding site for the dimethylbenzimidazole nucleotide substituent of adenosylcobalamin. The substitution of larger residues for glycine is predicted to block the binding of adenosylcobalamin.
Resumo:
Tc1-like transposable elements from teleost fish have been phylogenetically examined to determine the mechanisms involved in their evolution and conserved domains of function. We identified two new functional domains in these elements. The first is a bipartite nuclear localization signal, indicating that transposons can take advantage of the transport machinery of host cells for nuclear uptake of their transposases. The second is a novel combination of a paired domain-related protein motif juxtaposed to a leucine zipper-like domain located in the putative DNA-binding regions of the transposases. This domain coexists with a special inverted repeat structure in certain transposons in such phylogenetically distant hosts as fish and insects. Our data indicate that reassortment of functional domains and horizontal transmission between species are involved in the formation and spread of new types of transposable elements.
Resumo:
Alterations of various components of the cell cycle regulatory machinery that controls the progression of cells from a quiescent to a growing state contribute to the development of many human cancers. Such alterations include the deregulated expression of G1 cyclins, the loss of function of activities such as those of protein p16INK4a that control G1 cyclin-dependent kinase activity, and the loss of function of the retinoblastoma protein (RB), which is normally regulated by the G1 cyclin-dependent kinases. Various studies have revealed an inverse relationship in the expression of p16INK4a protein and the presence of functional RB in many cell lines. In this study we show that p16INK4a is expressed in cervical cancer cell lines in which the RB gene, Rb, is not functional, either as a consequence of Rb mutation or expression of the human papillomavirus E7 protein. We also demonstrate that p16INK4a levels are increased in primary cells in which RB has been inactivated by DNA tumor virus proteins. Given the role of RB in controlling E2F transcription factor activity, we investigated the role of E2F in controlling p16INK4a expression. We found that E2F1 overexpression leads to an inhibition of cyclin D1-dependent kinase activity and induces the expression of a p16-related transcript. We conclude that the accumulation of G1 cyclin-dependent kinase activity during normal G1 progression leads to E2F accumulation through the inactivation of RB, and that this then leads to the induction of cyclin kinase inhibitor activity and a shutdown of G1 kinase activity.
Resumo:
Human immunodeficiency virus (HIV) type 2, the second AIDS-associated human retrovirus, differs from HIV-1 in its natural history, infectivity, and pathogenicity, as well as in details of its genomic structure and molecular behavior. We report here that HIV-2 inhibits the replication of HIV-1 at the molecular level. This inhibition was selective, dose-dependent, and nonreciprocal. The closely related simian immunodeficiency provirus also inhibited HIV-1. The selectivity of inhibition was shown by the observation that HIV-2 did not significantly downmodulate the expression of the unrelated murine leukemia virus; neither did the murine leukemia virus markedly affect HIV-1 or HIV-2 expression. Moreover, while HIV-2 potently inhibited HIV-1, the reverse did not happen, thus identifying yet another and remarkable difference between HIV-1 and HIV-2. Mutational analysis of the HIV-2 genome suggested that the inhibition follows a complex pathway, possibly involving multiple genes and redundant mechanisms. Introduction of inactivating mutations into the structural and regulatory/accessory genes did not render the HIV-2 provirus ineffective. Some of the HIV-2 gene defects, such as that of tat and rev genes, were phenotypically transcomplemented by HIV-1. The HIV-2 proviruses with deletions in the putative packaging signal and defective for virus replication were effective in inducing the suppressive phenotype. Though the exact mechanism remains to be defined, the inhibition appeared to be mainly due to an intracellular molecular event because it could not be explained solely on the basis of cell surface receptor mediated interference. The results support the notion that the inhibition likely occurred at the level of viral RNA, possibly involving competition between viral RNAs for some transcriptional factor essential for virus replication. Induction of a cytokine is another possibility. These findings might be relevant to the clinical-epidemiological data suggesting that infection with HIV-2 may offer some protection against HIV-1 infection.
Resumo:
The Escherichia coli dnaQ gene encodes the proofreading 3' exonuclease (epsilon subunit) of DNA polymerase III holoenzyme and is a critical determinant of chromosomal replication fidelity. We constructed by site-specific mutagenesis a mutant, dnaQ926, by changing two conserved amino acid residues (Asp-12-->Ala and Glu-14-->Ala) in the Exo I motif, which, by analogy to other proofreading exonucleases, is essential for the catalytic activity. When residing on a plasmid, dnaQ926 confers a strong, dominant mutator phenotype, suggesting that the protein, although deficient in exonuclease activity, still binds to the polymerase subunit (alpha subunit or dnaE gene product). When dnaQ926 was transferred to the chromosome, replacing the wild-type gene, the cells became inviable. However, viable dnaQ926 strains could be obtained if they contained one of the dnaE alleles previously characterized in our laboratory as antimutator alleles or if it carried a multicopy plasmid containing the E. coli mutL+ gene. These results suggest that loss of proofreading exonuclease activity in dnaQ926 is lethal due to excessive error rates (error catastrophe). Error catastrophe results from both the loss of proofreading and the subsequent saturation of DNA mismatch repair. The probability of lethality by excessive mutation is supported by calculations estimating the number of inactivating mutations in essential genes per chromosome replication.
Resumo:
Many bacteria live only within animal cells and infect hosts through cytoplasmic inheritance. These endosymbiotic lineages show distinctive population structure, with small population size and effectively no recombination. As a result, endosymbionts are expected to accumulate mildly deleterious mutations. If these constitute a substantial proportion of new mutations, endosymbionts will show (i) faster sequence evolution and (ii) a possible shift in base composition reflecting mutational bias. Analyses of 16S rDNA of five independently derived endosymbiont clades show, in every case, faster evolution in endosymbionts than in free-living relatives. For aphid endosymbionts (genus Buchnera), coding genes exhibit accelerated evolution and unusually low ratios of synonymous to nonsynonymous substitutions compared to ratios for the same genes for enterics. This concentration of the rate increase in nonsynonymous substitutions is expected under the hypothesis of increased fixation of deleterious mutations. Polypeptides for all Buchnera genes analyzed have accumulated amino acids with codon families rich in A+T, supporting the hypothesis that substitutions are deleterious in terms of polypeptide function. These observations are best explained as the result of Muller's ratchet within small asexual populations, combined with mutational bias. In light of this explanation, two observations reported earlier for Buchnera, the apparent loss of a repair gene and the overproduction of a chaperonin, may reflect compensatory evolution. An alternative hypothesis, involving selection on genomic base composition, is contradicted by the observation that the speedup is concentrated at nonsynonymous sites.
Resumo:
Barnase and barstar are trivial names of the extracellular RNase and its intracellular inhibitor produced by Bacillus amyloliquefaciens. Inhibition involves the formation of a very tight one-to-one complex of the two proteins. With the crystallographic solution of the structure of the barnase-barstar complex and the development of methods for measuring the free energy of binding, the pair can be used to study protein-protein recognition in detail. In this report, we describe the isolation of suppressor mutations in barstar that compensate for the loss in interaction energy caused by a mutation in barnase. Our suppressor search is based on in vivo selection for barstar variants that are able to protect host cells against the RNAse activity of those barnase mutants not properly inhibited by wild-type barstar. This approach utilizes a plasmid system in which barnase expression is tightly controlled to keep the mutant barnase gene silent. When expression of barnase is turned on, failure to form a complex between the mutant barnase and barstar has a lethal effect on host cells unless overcome by substitution of the wild-type barstar by a functional suppressor derivative. A set of barstar suppressors has been identified for barnase mutants with substitutions in two amino acid positions (residues 102 and 59), which are critically involved in both RNase activity and barstar binding. The mutations selected as suppressors could not have been predicted on the basis of the known protein structures. The single barstar mutation with the highest information content for inhibition of barnase (H102K) has the substitution Y30W. The reduction in binding caused by the R59E mutation in barnase can be partly reversed by changing Glu-76 of barstar, which forms a salt bridge with the Arg-59 in the wild-type complex, to arginine, thus completing an interchange of the two charges.
Resumo:
Human cancer cells with a mutated p53 tumor-suppressor gene have a selective growth advantage and may exhibit resistance to ionizing radiation and certain chemotherapeutic agents. To examine the prognostic value of mutations in the p53 gene, a cohort of 90 Midwestern Caucasian breast cancer patients were analyzed with methodology that detects virtually 100% of all mutations. The presence of a p53 gene mutation was by far the single most predictive indicator for recurrence and death (relative risks of 4.7 and 23.2, respectively). Direct detection of p53 mutations had substantially greater prognostic value than immunohistochemical detection of p53 overexpression. Analysis of p53 gene mutations may permit identification of a subset of breast cancer patients who, despite lack of conventional indicators of poor prognosis, are at high risk of early recurrence and death.
Resumo:
Muller proposed that an asexual organism will inevitably accumulate deleterious mutations, resulting in an increase of the mutational load and an inexorable, ratchet-like, loss of the least mutated class [Muller, H.J. (1964) Mutat. Res. 1, 2-9]. The operation of Muller's ratchet on real populations has been experimentally demonstrated only in RNA viruses. However, these cases are exceptional in that the mutation rates of the RNA viruses are extremely high. We have examined whether Muller's ratchet operates in Salmonella typhimurium, a DNA-based organism with a more typical genomic mutation rate. Cells were grown asexually under conditions expected to result in high genetic drift, and the increase in mutational load was determined. S. typhimurium accumulated mutations under these conditions such that after 1700 generations, 1% of the 444 lineages tested had suffered an obvious loss of fitness, as determined by decreased growth rate. These results suggest that in the absence of sex and with high genetic drift, genetic mechanisms, such as back or compensatory mutations, cannot compensate for the accumulation of deleterious mutations. In addition, we measured the appearance of auxotrophs, which allowed us to calculate an average spontaneous mutation rate of approximately 0.3-1.5 x 10(-9) mutations per base pair per generation. This rate is measured for the largest genetic target studied so far, a collection of about 200 genes.