206 resultados para Major Histocompatibility Complex
Resumo:
Invariant chain (Ii), a membrane glycoprotein, binds class II major histocompatibility complex (MHC) glycoproteins, probably via its class II-associated Ii peptide (CLIP) segment, and escorts them toward antigen-containing endosomal compartments. We find that a soluble, trimeric ectodomain of Ii expressed and purified from Escherichia coli blocks peptide binding to soluble HLA-DR1. Proteolysis indicates that Ii contains two structural domains. The C-terminal two-thirds forms an alpha-helical domain that trimerizes and interacts with empty HLA-DR1 molecules, augmenting rather than blocking peptide binding. The N-terminal one-third, which inhibits peptide binding, is proteolytically susceptible over its entire length. In the trimer, the N-terminal domains act independently with each CLIP segment exposed and free to bind an MHC class II molecule, while the C-terminal domains act as a trimeric unit.
Similar antigenic surfaces, rather than sequence homology, dictate T-cell epitope molecular mimicry.
Resumo:
Molecular mimicry, normally defined by the level of primary-sequence similarities between self and foreign antigens, has been considered a key element in the pathogenesis of autoimmunity. Here we describe an example of molecular mimicry between two overlapping peptides within a single self-antigen, both of which are recognized by the same human self-reactive T-cell clone. Two intervening peptides did not stimulate the T-cell clone, even though they share nine amino acids with the stimulatory peptides. Molecular modeling of major histocompatibility complex class II-peptide complexes suggests that both of the recognized peptides generate similar antigenic surfaces, although these are composed of different sets of amino acids. The molecular modeling of a peptide shifted one residue from the stimulatory peptide, which was recognized in the context of the same HLA molecule by another T-cell clone, generated a completely different antigenic surface. Functional studies using truncated peptides confirmed that the anchor residues of the two "mimicking" epitopes in the HLA groove differ. Our results show, for two natural epitopes, how molecular mimicry can occur and suggest that studies of potential antigenic surfaces, rather than sequence similarity, are necessary for analyzing suspected peptide mimicry.
Resumo:
L-Glutamate is the most common excitatory neurotransmitter in the brain and plays a crucial role in neuronal plasticity as well as in neurotoxicity. While a large body of literature describes the induction of immediate-early genes, including c-fos, fosB, c-jun, junB, zif/268, and krox genes by glutamate and agonists in neurons, very little is known about preexisting transcription factors controlling the induction of such genes. This prompted us to investigate whether stimulation of glutamate receptors can activate NF-kappa B, which is present in neurons in either inducible or constitutive form. Here we report that brief treatments with kainate or high potassium strongly activated NF-kappa B in granule cells from rat cerebellum. This was detected at the single cell level by immunostaining with a monoclonal antibody that selectively reacts with the transcriptionally active, nuclear form of NF-kappa B p65. The activation of NF-kappa B could be blocked with the antioxidant pyrrolidine dithiocarbamate, suggesting the involvement of reactive oxygen intermediates. The data may explain the kainate-induced cell surface expression of major histocompatibility complex class I molecules, which are encoded by genes known to be controlled by NF-kappa B. Moreover, NF-kappa B activity was found to change dramatically in neurons during development of the cerebellum between days 5 and 7 after birth.
Resumo:
Tolerance induction by thymic epithelium induces a state of so-called "split tolerance," characterized in vivo by tolerance and in vitro by reactivity to a given thymically expressed antigen. Using a model major histocompatibility complex class I antigen, H-2Kb (Kb), three mechanisms of thymic epithelium-induced tolerance were tested: induction of tolerance of tissue-specific antigens exclusively, selective inactivation of T helper cell-independent cytotoxic T lymphocytes, and deletion of high-avidity T cells. To this end, thymic anlagen from Kb-transgenic embryonic day 10 mouse embryos, taken before colonization by cells of hemopoietic origin, were grafted to nude mice. Tolerance by thymic epithelium was not tissue-specific, since Kb-bearing skin and spleen grafts were maintained indefinitely. Only strong priming in vivo could partially overcome the tolerant state and induce rejection of some skin grafts overexpressing transgenic Kb. Furthermore, the hypothesis that thymic epithelium selectively inactivates those T cells that reject skin grafts in a T helper-independent fashion could not be supported. Thus, when T-cell help was provided by a second skin graft bearing an additional major histocompatibility complex class II disparity, tolerance to the Kb skin graft was not broken. Finally, direct evidence could be obtained for the avidity model of thymic epithelium-induced negative selection, using Kb-specific T-cell receptor (TCR) transgenic mice. Thymic epithelium-grafted TCR transgenic mice showed a selective deletion of those CD8+ T cells with the highest density of the clonotypic TCR. These cells presumably represent the T cells with the highest avidity for Kb. We conclude that split tolerance induced by thymic epithelium was mediated by the deletion of those CD8+ T lymphocytes that have the highest avidity for antigen.
Resumo:
Whole genome linkage analysis of type 1 diabetes using affected sib pair families and semi-automated genotyping and data capture procedures has shown how type 1 diabetes is inherited. A major proportion of clustering of the disease in families can be accounted for by sharing of alleles at susceptibility loci in the major histocompatibility complex on chromosome 6 (IDDM1) and at a minimum of 11 other loci on nine chromosomes. Primary etiological components of IDDM1, the HLA-DQB1 and -DRB1 class II immune response genes, and of IDDM2, the minisatellite repeat sequence in the 5' regulatory region of the insulin gene on chromosome 11p15, have been identified. Identification of the other loci will involve linkage disequilibrium mapping and sequencing of candidate genes in regions of linkage.
Resumo:
T-cell receptors (TCRs) recognize peptide bound within the relatively conserved structural framework of major histocompatibility complex (MHC) class I or class II molecules but can discriminate between closely related MHC molecules. The structural basis for the specificity of ternary complex formation by the TCR and MHC/peptide complexes was examined for myelin basic protein (MBP)-specific T-cell clones restricted by different DR2 subtypes. Conserved features of this system allowed a model for positioning of the TCR on DR2/peptide complexes to be developed: (i) The DR2 subtypes that presented the immunodominant MBP peptide differed only at a few polymorphic positions of the DR beta chain. (ii) TCR recognition of a polymorphic residue on the helical portion of the DR beta chain (position DR beta 67) was important in determining the MHC restriction. (iii) The TCR variable region (V) alpha 3.1 gene segment was used by all of the T-cell clones. TCR V beta usage was more diverse but correlated with the MHC restriction--i.e., with the polymorphic DR beta chains. (iv) Two clones with conserved TCR alpha chains but different TCR beta chains had a different MHC restriction but a similar peptide specificity. The difference in MHC restriction between these T-cell clones appeared due to recognition of a cluster of polymorphic DR beta-chain residues (DR beta 67-71). MBP-(85-99)-specific TCRs therefore appeared to be positioned on the DR2/peptide complex such that the TCR beta chain contacted the polymorphic DR beta-chain helix while the conserved TCR alpha chain contacted the nonpolymorphic DR alpha chain.
Resumo:
In the tumor-bearing host, T cells invariably fail to induce a clinically significant antitumor immune response. Although model systems support the existence of tumor peptide antigens, the molecular interactions critical for antigen presentation by the tumor cell remain unresolved. Here, we demonstrate that human follicular lymphoma cells are highly inefficient at presenting alloantigen despite their strong expression of major histocompatibility complex and low-to-intermediate expression of some adhesion and B7 costimulatory molecules. Activation of follicular lymphoma cells via CD40 induces or up-regulates both adhesion and B7 costimulatory molecules essential to repair this defect. More importantly, once primed, alloreactive T cells efficiently recognize unstimulated follicular lymphoma cells. Thus, correction of defective tumor immunity requires not only expression of major histocompatibility complex but also sufficient expression of multiple adhesion and costimulatory molecules.
Resumo:
The invariant chain (Ii) prevents binding of ligands to major histocompatibility complex (MHC) class II molecules in the endoplasmic reticulum and during intracellular transport. Stepwise removal of the Ii in a trans-Golgi compartment renders MHC class II molecules accessible for peptide loading, with CLIP (class II-associated Ii peptides) as the final fragment to be released. Here we show that CLIP can be subdivided into distinct functional regions. The C-terminal segment (residues 92-105) of the CLIP-(81-105) fragment mediates inhibition of self- and antigenic peptide binding to HLA-DR2 molecules. In contrast, the N-terminal segment CLIP-(81-98) binds to the Staphylococcus aureus enterotoxin B contact site outside the peptide-binding groove on the alpha 1 domain and does not interfere with peptide binding. Its functional significance appears to lie in the contribution to CLIP removal: the dissociation of CLIP-(81-105) is characterized by a fast off-rate, which is accelerated at endosomal pH, whereas in the absence of the N-terminal CLIP-(81-91), the off-rate of C-terminal CLIP-(92-105) is slow and remains unaltered at low pH. Mechanistically, the N-terminal segment of CLIP seems to prevent tight interactions of CLIP side chains with specificity pockets in the peptide-binding groove that normally occurs during maturation of long-lived class II-peptide complexes.
Resumo:
We present an analysis that synthesizes information on the sequence, structure, and motifs of antigenic peptides, which previously appeared to be in conflict. Fourier analysis of T-cell antigenic peptides indicates a periodic variation in amino acid polarities of 3-3.6 residues per period, suggesting an amphipathic alpha-helical structure. However, the diffraction patterns of major histocompatibility complex (MHC) molecules indicate that their ligands are in an extended non-alpha-helical conformation. We present two mutually consistent structural explanations for the source of the alpha-helical periodicity, based on an observation that the side chains of MHC-bound peptides generally partition with hydrophobic (hydrophilic) side chains pointing into (out of) the cleft. First, an analysis of haplotype-dependent peptide motifs indicates that the locations of their defining residues tend to force a period 3-4 variation in hydrophobicity along the peptide sequence, in a manner consistent with the spacing of pockets in the MHC. Second, recent crystallographic determination of the structure of a peptide bound to a class II MHC molecule reveals an extended but regularly twisted peptide with a rotation angle of about 130 degrees. We show that similar structures with rotation angles of 100-130 degrees are energetically acceptable and also span the length of the MHC cleft. These results provide a sound physical chemical and structural basis for the existence of a haplotype-independent antigenic motif which can be particularly important in limiting the search time for antigenic peptides.
Resumo:
The cytokines interleukin (IL) 4 and IL-13 induce many of the same biological responses, including class switching to IgE and induction of major histocompatibility complex class II antigens and CD23 on human B cells. It has recently been shown that IL-4 induces the tyrosine phosphorylation of a 170-kDa protein, a substrate called 4PS, and of the Janus kinase (JAK) family members JAK1 and JAK3. Because IL-13 has many functional effects similar to those of IL-4, we compared the ability of IL-4 and IL-13 to activate these signaling molecules in the human multifactor-dependent cell line TF-1. In this report we demonstrate that both IL-4 and IL-13 induced the tyrosine phosphorylation of 4PS and JAK1. Interestingly, although IL-4 induced the tyrosine phosphorylation of JAK3, we did not detect JAK3 phosphorylation in response to IL-13. These data suggest that IL-4 and IL-13 signal in similar ways via the activation of JAK1 and 4PS. However, our data further indicate that there are significant differences because IL-13 does not activate JAK3.
Resumo:
To generate a potent cell-mediated immune response, at least two signals are required by T cells. One is engagement of the T-cell receptor with peptide-bearing major histocompatibility complex molecules. The other signal can be delivered by various molecules on the antigen-presenting cell, such as B7-1 (CD80). Many tumor cells escape immune recognition by failing to express these costimulatory molecules. Transfection of the B7 gene into some murine tumor cells allows for immune recognition and subsequent rejection of the parental tumor. We have studied an alternative approach for the introduction of B7-1 onto the surface of tumor cells. This method involves purified glycosyl-phosphatidylinositol (GPI)-anchored proteins which can spontaneously incorporate their lipid tail into cell membranes. We have created and purified a GPI-anchored B7-1 molecule (called GPI-B7) which is able to bind its cognate ligand, CD28, and incorporate itself into tumor cell membranes after a short incubation. Tumor cells that have been reconstituted with GPI-B7 can provide the costimulatory signal needed to stimulate T cells. These findings suggest an approach for the introduction of new proteins onto cell membranes to create an effective tumor vaccine for potential use in human immunotherapy.
Resumo:
Human melanoma cells can process the MAGE-1 gene product and present the processed nonapeptide EADPTGHSY on their major histocompatibility complex class I molecules, HLA-A1, as a determinant for cytolytic T lymphocytes (CTLs). Considering that autologous antigen presenting cells (APCs) pulsed with the synthetic nonapeptide might, therefore, be immunogenic, melanoma patients whose tumor cells express the MAGE-1 gene and who are HLA-A1+ were immunized with a vaccine made of cultured autologous APCs pulsed with the synthetic nonapeptide. Analyses of the nature of the in vivo host immune response to the vaccine revealed that the peptide-pulsed APCs are capable of inducing autologous melanoma-reactive and the nonapeptide-specific CTLs in situ at the immunization site and at distant metastatic disease sites.
Resumo:
We screened a panel of monoclonal antibodies against selected macrophage cell surface molecules for their ability to inhibit enterotoxin binding to major histocompatibility complex class II-negative C2D (H-2b) macrophages. Two monoclonal antibodies, HB36 and TIB126, that are specific for the alpha 2 domain of major histocompatibility complex class I, blocked staphylococcal enterotoxins A and B (SEA and SEB, respectively) binding to C2D macrophages in a specific and concentration-dependent manner. Inhibitory activities were haplotype-specific in that SEA and SEB binding to H-2k or H-2d macrophages was not inhibited by either monoclonal antibody. HB36, but not TIB126, inhibited enterotoxin-induced secretion of cytokines by H-2b macrophages. Lastly, passive protection of D-galactosamine-sensitized C2D mice by injection with HB36 antibody prevented SEB-induced death. Therefore, SEA and SEB binding to the alpha 2 domain of the H-2Db molecule induces biological activity and has physiological consequences.
Resumo:
A PCR-based assay has been devised for the detection and semiquantitation of cells originating from a few donor hematopoietic stem cells (HSCs) in a background of recipient cells. Upon sequencing a segment of murine Y chromosome contained in the plasmid pY2, oligonucleotide primers were designed for specific amplification of the Y chromosome-restricted segment. The HSCs were isolated from the bone marrow of mice on day 4 following a single i.v. injection of 5-fluorouracil and were readily distinguished from other bone marrow elements by the characteristics of low density, absence of lineage-specific surface markers, lack of expression of transferrin receptor, and a high expression of major histocompatibility complex class I antigen. Injection of as few as four such HSCs was shown to produce donor-derived cells (including lymphoid cells) for at least 8 months after transplantation into syngeneic female recipients. Retransplantation, employing 10(6) bone marrow cells from the initial recipients, also yielded clear evidence of repopulation with detectable levels of male donor cells. On statistical grounds, it is clear that long-term repopulation in vivo may result from even a single HSC having the characteristics defined herein.
Resumo:
Although T cells bearing gamma delta T-cell receptors have long been known to be present in the epithelial lining of many organs, their specificity and function remain elusive. In the present study, we examined the intestinal epithelia of T-cell-receptor mutant mice, which were deficient in either gamma delta T cells or alpha beta T cells, and of normal littermates. The absence of gamma delta T cells was associated with a reduction in epithelial cell turnover and a downregulation of the expression of major histocompatibility complex class II molecules. No such effects were observed in alpha beta T-cell-deficient mice. These findings indicate that intraepithelial gamma delta T cells regulate the generation and differentiation of intestinal epithelial cells.