171 resultados para HLA E antigen
Resumo:
Homopolymers of alpha 2,8-linked N-acetylneuraminic acid [poly(alpha 2,8-Neu5Ac)] of the neural cell adhesion molecule NCAM have been shown to be temporally expressed during lung development and represent a marker for small cell lung carcinoma. We report the presence of a further polysialic acid in lung that consists of oligo/polymers of alpha 2,8-linked deaminoneuraminic acid residues [poly (alpha 2,8-KDN)], as detected with a monoclonal antibody in conjunction with a specific sialidase. Although the various cell types forming the bronchi, alveolar septs, and blood vessels were positive for poly (alpha 2,8-KDN) by immunohistochemistry, this polysialic acid was found on a single 150-kDa glycoprotein by immunoblot analysis. The poly(alpha 2,8-KDN)-bearing glycoprotein was not related to an NCAM protein based on immunochemical criteria. The expression of the poly (alpha 2,8-KDN) was developmentally regulated as evidenced by its gradual disappearance in the rat lung parenchyma commencing 1 week after birth. In adult lung the blood vessel endothelia and the smooth muscle fibers of both blood vessels and bronchi were positive but not the bronchial and alveolar epithelium. The poly (alpha 2,8-KDN)-bearing 150-kDa glycoprotein became reexpressed in various histological types of lung carcinomas and cell lines derived from them and represents a new oncodevelopmental antigen in lung.
Resumo:
The lethal factor (LF) and edema factor (EF) of anthrax toxin bind by means of their amino-terminal domains to protective antigen (PA) on the surface of toxin-sensitive cells and are translocated to the cytosol, where they act on intracellular targets. Genetically fusing the amino-terminal domain of LF (LFN; residues 1-255) to certain heterologous proteins has been shown to potentiate these proteins for PA-dependent delivery to the cytosol. We report here that short tracts of lysine, arginine, or histidine residues can also potentiate a protein for such PA-dependent delivery. Fusion of these polycationic tracts to the amino terminus of the enzymic A chain of diphtheria toxin (DTA; residues 1-193) enabled it to be translocated to the cytosol by PA and inhibit protein synthesis. The efficiency of translocation was dependent on tract length: (LFN > Lys8 > Lys6 > Lys3). Lys6 was approximately 100-fold more active than Arg6 or His6, whereas Glu6 and (SerSerGly)2 were inactive. Arg6DTA was partially degraded in cell culture, which may explain its low activity relative to that of Lys6DTA. The polycationic tracts may bind to anionic sites at the cell surface (possibly on PA), allowing the fusion proteins to be coendocytosed with PA and delivered to the endosome, where translocation to the cytosol occurs. Excess free LFN blocked the action of LFNDTA, but not of Lys6DTA. This implies that binding to the LF/EF site is not an obligatory step in translocation and suggests that the polycationic tag binds to a different site. Besides elucidating the process of translocation in anthrax toxin, these findings may aid in developing systems to deliver heterologous proteins and peptides to the cytoplasm of mammalian cells.
Resumo:
Bullous pemphigoid (BP) is an autoimmune subepidermal blistering disease seen primarily in elderly persons. It is characterized clinically by the development of tense bullae and by the presence of an antibasement membrane antibody. In BP, the antigens involved in the autoimmunity are epidermal basement membrane peptides BPAg1 and BPAg2. We have compared high resolution typing of major histocompatibility complex class II loci (HLA-DRB1, DQB1) in 21 patients with BP, 17 with ocular cicatricial pemphigoid (OCP), and 22 with oral pemphigoid (OP) to a panel of 218 haplotypes of normal individuals. We found that the three diseases (BP, OCP, and OP) have significant association with DQB1*0301 (P = 0.005, P < 0.0001, and P = 0.001, respectively). The frequencies of alleles DQB1*0302, 0303, and 06, which share a specific amino acid sequence from position 71 to 77 (Thr-Arg-Ala-Glu-Leu-Val-Thr) were also increased (P = 0.01). We suggest that an identical major histocompatibility complex class II allele (DQB1*0301) is a common marker for enhanced susceptibility and that the same amino acid residues in positions 71-77 (DQB1*0301, -0302, -0305, -0602, -0603 alleles) are found in patients with BP, OCP and OP. Our findings propose that the autoimmune response in the three different clinical variants of pemphigoid, involves the recognition by T cells of a class II region of DQB1, bound to a peptide from the basement membrane of conjunctiva, oral mucosa, and skin.
Resumo:
The B cell antigen receptor (BCR) consists of the membrane-bound immunoglobulin (mIg) molecule and the Ig-alpha/Ig-beta heterodimer, which functions as signaling subunit of the receptor. Stimulation of the BCR activates protein tyrosine kinases (PTKs) that phosphorylate a number of substrate proteins, including the Ig-alpha/Ig-beta heterodimer of the BCR itself. How the PTKs become activated after BCR engagement is not known at present. Here, we show that BCR-negative J558L cells treated with the protein tyrosine phosphatase inhibitor pervanadate/H2O2 display only a weak substrate phosphorylation. However, in BCR-positive transfectants of J558L, treatment with pervanadate/H2O2 induces a strong phosphorylation of several substrate proteins. Treatment with pervanadate/H2O2 does not result in receptor crosslinking, yet the pattern of protein phosphorylation is similar to that observed after BCR stimulation by antigen. The response requires cellular integrity because tyrosine phosphorylation of most substrates is not visible in cell lysates. Cells that express a BCR containing an Ig-alpha subunit with a mutated immunoreceptor tyrosine-based activation motif display a delayed response. The data suggest that, once expressed on the surface, the BCR organizes protein tyrosine phosphatases, PTKs, and their substrates into a transducer complex that can be activated by pervanadate/H202 in the absence of BCR crosslinking. Assembly of this preformed complex seems to be a prerequisite for BCR-mediated signal transduction.
Resumo:
Live vaccine vectors are usually very effective and generally elicit immune responses of higher magnitude and longer duration than nonliving vectors. Consequently, much attention has been turned to the engineering of oral pathogens for the delivery of foreign antigens to the gut-associated lymphoid tissues. However, no bacterial vector has yet been designed to specifically take advantage of the nasal route of mucosal vaccination. Herein we describe a genetic system for the expression of heterologous antigens fused to the filamentous hemagglutinin (FHA) in Bordetella pertussis. The Schistosoma mansoni glutathione S-transferase (Sm28GST) fused to FHA was detected at the cell surface and in the culture supernatants of recombinant B. pertussis. The mouse colonization capacity and autoagglutination of the recombinant microorganism were indistinguishable from those of the wild-type strain. In addition, and in contrast to the wild-type strain, a single intranasal administration of the recombinant strain induced both IgA and IgG antibodies against Sm28GST and against FHA in the bronchoalveolar lavage fluids. No anti-Sm28GST antibodies were detected in the serum, strongly suggesting that the observed immune response was of mucosal origin. This demonstrates, to our knowledge, for the first time that recombinant respiratory pathogens can induce mucosal immune responses against heterologous antigens, and this may constitute a first step toward the development of combined live vaccines administrable via the respiratory route.
Resumo:
Position 57 in the beta chain of HLA class II molecules maintains an Asp/non-Asp dimorphism that has been conserved through evolution and is implicated in susceptibility to some autoimmune diseases. The latter effect may be due to the influence of this residue on the ability of class II alleles to bind specific pathogenic peptides. We utilized highly homologous pairs of both DR and DQ alleles that varied at residue 57 to investigate the impact of this dimorphism on binding of model peptides. Using a direct binding assay of biotinylated peptides on whole cells expressing the desired alleles, we report several peptides that bind differentially to the allele pairs depending on the presence or absence of Asp at position 57. Peptides with negatively charged residues at anchor position 9 bind well to alleles not containing Asp at position 57 in the beta chain but cannot bind well to homologous Asp-positive alleles. By changing the peptides at the single residue predicted to interact with this position 57, we demonstrate a drastically altered or reversed pattern of binding. Ala analog peptides confirm these interactions and identify a limited set of interaction sites between the bound peptides and the class II molecules. Clarification of the impact of specific class II polymorphisms on generating unique allele-specific peptide binding "repertoires" will aid in our understanding of the development of specific immune responses and HLA-associated diseases.
Resumo:
The selective production of monoclonal antibodies (mAbs) reacting with defined cell surface-expressed molecules is now readily accomplished with an immunological subtraction approach, surface-epitope masking (SEM). Using SEM, prostate carcinoma (Pro 1.5) mAbs have been developed that react with tumor-associated antigens expressed on human prostate cancer cell lines and patient-derived carcinomas. Screening a human LNCaP prostate cancer cDNA expression library with the Pro 1.5 mAb identifies a gene, prostate carcinoma tumor antigen-1 (PCTA-1). PCTA-1 encodes a secreted protein of approximately 35 kDa that shares approximately 40% sequence homology with the N-amino terminal region of members of the S-type galactose-binding lectin (galectin) gene family. Specific galectins are found on the surface of human and marine neoplastic cells and have been implicated in tumorigenesis and metastasis. Primer pairs within the 3' untranslated region of PCTA-1 and reverse transcription-PCR demonstrate selective expression of PCTA-1 by prostate carcinomas versus normal prostate and benign prostatic hypertrophy. These findings document the use of the SEM procedure for generating mAbs reacting with tumor-associated antigens expressed on human prostate cancers. The SEM-derived mAbs have been used for expression cloning the gene encoding this human tumor antigen. The approaches described in this paper, SEM combined with expression cloning, should prove of wide utility for developing immunological reagents specific for and identifying genes relevant to human cancer.
Resumo:
There is a need for more effective therapy for chronic virus infections. A principle natural mechanism for elimination of virus-infected host cells is activation of viral antigen-specific cytotoxic T lymphocytes (CTL). In an effort to develop methods of inducing virus-specific CTL responses that might be utilized in therapy of virus infections, we have investigated the effect of B7, a costimulatory factor for T-cell activation. In this study we show that delivery of genes encoding human B7-1 and a viral antigen in the same recombinant viral vector to cells of mice induces a greater viral antigen-specific CTL response than does similar delivery of the viral antigen gene alone. Two recombinant adenovirus vectors were constructed with the foreign genes inserted in the early region 3. One of them (Ad1312) directed expression of the surface antigen gene of hepatitis B virus (HBS); the other (Ad1310) directed coexpression of HBS and human B7-1 (CD80) by means of an internal ribosomal entry site placed between the two coding sequences. When inoculated into BALB/c mice, both vectors induced a viral surface antigen-specific CTL response. The response induced by Ad1310 was stronger than that by Adl312 as measured by a chromium release assay for CTL activity and limiting dilution analysis for CTL precursor frequency, indicating that the B7-1 gene co-delivered with the HBS gene had an enhancing effect on the CTL response against surface antigen. Ad1310 also induced a higher titer of antibody against surface antigen than did Ad1312. This result suggests that expression of a costimulatory protein and a viral antigen in the same cells in vivo induces stronger immune responses than expression of the antigen alone. This could be a novel strategy for development of both preventive and therapeutic vaccines against infectious agents.
Resumo:
We describe molecular and clinical findings in an immunocompetent patient with an oligoastrocytoma and the concomitant presence of the human papovavirus, JC virus (JCV), which is the etiologic agent of the subacute, debilitating demyelinating disease, progressive multifocal leukoencephalopathy. Histologic review revealed a glial neoplasm consisting primarily of a moderately cellular oligodendroglioma with distinct areas of a fibrillary astrocytoma. Immunohistochemical analysis revealed nuclear staining of tumor cells with antibodies against the viral oncoprotein [tumor antigen (T antigen)], the proliferation marker (Ki67), and the cellular proliferation regulator (p53). Using primers specific to the JCV control region, PCR yielded amplified DNA that was identical to the control region of the Mad-4 strain of the virus. PCR analysis demonstrated the presence of the genome for the viral oncoprotein, T antigen, and results from primer extension studies revealed synthesis of the viral early RNA for T antigen in the tumor tissues. The presence of viral T antigen in the tumor tissue was further demonstrated by immunoblot assay. To our knowledge, this is the first report of the presence of JCV DNA, RNA, and T antigen in tissue in which viral T antigen is localized to tumor cell nuclei and suggests the possible association of JCV with some glial neoplasms.
Resumo:
We used the common fish pathogen Ichthyophthirius multifiliis as a model for studying interactions between parasitic ciliates and their vertebrate hosts. Although highly pathogenic, Ichthyophthirius can elicit a strong protective immune response in fish after exposure to controlled infections. To investigate the mechanisms underlying host resistance, a series of passive immunization experiments were carried out using mouse monoclonal antibodies against a class of surface membrane proteins, known as immobilization antigens (or i-antigens), thought to play a role in the protective response. Such antibodies bind to cilia and immobilize I. multifiliis in vitro. Surprisingly, we found that passive antibody transfer in vivo caused rapid exit of parasites from the host. The effect was highly specific for a given I. multifiliis serotype. F(ab)2 subfragments had the same effect as intact antibody, whereas monovalent Fab fragments failed to protect. The activity of Fab could, nevertheless, be restored after subsequent i.p. injection of bivalent goat anti-mouse IgG. Parasites that exit the host had detectable antibody on their surface and appeared viable in all respects. These findings represent a novel instance among protists in which protective immunity (and evasion of the host response) result from an effect of antibody on parasite behavior.
Resumo:
Recognition of peptides bound to class I major histocompatibility complex (MHC) molecules by specific receptors on T cells regulates the development and activity of the cellular immune system. We have designed and synthesized de novo cyclic peptides that incorporate PEG in the ring structure for binding to class I MHC molecules. The large PEG loops are positioned to extend out of the peptide binding site, thus creating steric effects aimed at preventing the recognition of class I MHC complexes by T-cell receptors. Peptides were synthesized and cyclized on polymer support using high molecular weight symmetrical PEG dicarboxylic acids to link the side chains of lysine residues substituted at positions 4 and 8 in the sequence of the HLA-A2-restricted human T-lymphotrophic virus type I Tax peptide. Cyclic peptides promoted the in vitro folding and assembly of HLA-A2 complexes. Thermal denaturation studies using circular dichroism spectroscopy showed that these complexes are as stable as complexes formed with antigenic peptides.
Resumo:
The role of inflammatory T cells in Crohn's disease suggests that inherited variations in major histocompatibility complex (MHC) class II genes may be of pathogenetic importance in inflammatory bowel disease. The absence of consistent and strong associations with MHC class II genes in Caucasian patients with inflammatory bowel disease probably reflects the use of less precise typing approaches and the failure to type certain loci by any means. A PCR-sequence-specific oligonucleotide-based approach was used to type individual alleles of the HLA class II DRB1, DRB3, DRB4, and DRB5 loci in 40 patients with ulcerative colitis, 42 Crohn's disease patients, and 93 ethnically matched healthy controls. Detailed molecular typing of the above alleles has previously not been reported in patients with inflammatory bowel disease. A highly significant positive association with the HLA-DRB3*0301 allele was observed in patients with Crohn's disease (P = 0.0004) but not in patients with ulcerative colitis. The relative risk for this association was 7.04. Other less significant HLA class II associations were also noted in patients with Crohn's disease. One of these associations involved the HLA-DRB1*1302 allele, which is known to be in linkage disequilibrium with HLA-DRB3*0301. These data suggest that a single allele of an infrequently typed HLA class II locus is strongly associated with Crohn's disease and that MHC class II molecules may be important in its pathogenesis.
Resumo:
In tuberculosis, Mycobacterium tuberculosis (MTB)-stimulated T-cell responses are depressed transiently, whereas antibody levels are increased. Lymphoproliferative responses of peripheral blood mononuclear cells (PBMCs) from Pakistani tuberculosis (TB) patients to both mycobacterial and candidal antigens were suppressed by approximately 50% when compared to healthy purified protein derivative (PPD)-positive household contacts. Production of interferon gamma (IFN-gamma) in response to PPD also was depressed by 78%. Stimulation with PPD and the 30-kDa alpha antigen of MTB (30-kDa antigen) induced greater secretion of transforming growth factor beta (TGF-beta), but not interleukin 10 (IL-10) or tumor necrosis factor alpha (TNF-alpha), by PBMCs from TB patients compared to healthy contacts. The degree of suppression correlated with the duration of treatment; patients treated for <1 month had significantly lower T-cell blastogenesis and IFN-gamma production and higher levels of TGF-beta than did patients treated for >1 month. Neutralizing antibody to TGF-beta normalized lymphocyte proliferation in response to PPD, partially restored blastogenesis to candidal antigen, and significantly increased PPD-stimulated production of IFN-gamma in TB patients but not in contacts. Neutralizing antibody to IL-10 augmented, but did not normalize, T-cell responses to both PPD and candida in TB patients and candidal antigen in contacts. TGF-beta, produced in response to MTB antigens, therefore plays a prominent role in down-regulating potentially protective host effector mechanisms and looms as an important mediator of immunosuppression in TB.
Resumo:
A methodology has been developed for the study of molecular recognition at the level of single events and for the localization of sites on biosurfaces, in combining force microscopy with molecular recognition by specific ligands. For this goal, a sensor was designed by covalently linking an antibody (anti-human serum albumin, polyclonal) via a flexible spacer to the tip of a force microscope. This sensor permitted detection of single antibody-antigen recognition events by force signals of unique shape with an unbinding force of 244 +/- 22 pN. Analysis revealed that observed unbinding forces originate from the dissociation of individual Fab fragments from a human serum albumin molecule. The two Fab fragments of the antibody were found to bind independently and with equal probability. The flexible linkage provided the antibody with a 6-nm dynamical reach for binding, rendering binding probability high, 0.5 for encounter times of 60 ms. This permitted fast and reliable detection of antigenic sites during lateral scans with a positional accuracy of 1.5 nm. It is indicated that this methodology has promise for characterizing rate constants and kinetics of molecular recognition complexes and for molecular mapping of biosurfaces such as membranes.
Resumo:
We show that interleukin 3 (IL-3) enhances the generation of tumor-specific cytotoxic T lymphocytes (CTLs) through the stimulation of host antigen-presenting cells (APCs). The BALB/c (H-2d) spontaneous lung carcinoma line 1 was modified by gene transfection to express ovalbumin as a nominal "tumor antigen" and to secrete IL-3, a cytokine enhancing myeloid development. IL-3-transfected tumor cells are less tumorigenic than the parental cell line, and tumor-infiltrating lymphocytes isolated from these tumors contain increased numbers of tumor-specific CTLs. By using B3Z86/90.14 (B3Z), a unique T-cell hybridoma system restricted to ovalbumin/H-2b and implanting the tumors in (BALB/c x C57BL/6)F1 (H-2d/b) mice, we demonstrate that the IL-3-transfected tumors contain an increased number of a rare population of host cells that can process and "re-present" tumor antigen to CTLs. Electron microscopy allowed direct visualization of these host APCs, and these studies, along with surface marker phenotyping, indicate that these APCs are macrophage-like. The identification of these cells and their enhancement by IL-3 offers a new opportunity for tumor immunotherapy.