195 resultados para Drosophila mulleri
Resumo:
Phototransduction systems in vertebrates and invertebrates share a great deal of similarity in overall strategy but differ significantly in the underlying molecular machinery. Both are rhodopsin-based G protein-coupled signaling cascades displaying exquisite sensitivity and broad dynamic range. However, light activation of vertebrate photoreceptors leads to activation of a cGMP-phosphodiesterase effector and the generation of a hyperpolarizing response. In contrast, activation of invertebrate photoreceptors, like Drosophila, leads to stimulation of phospholipase C and the generation of a depolarizing receptor potential. The comparative study of these two systems of phototransduction offers the opportunity to understand how similar biological problems may be solved by different molecular mechanisms of signal transduction. The study of this process in Drosophila, a system ideally suited to genetic and molecular manipulation, allows us to dissect the function and regulation of such a complex signaling cascade in its normal cellular environment. In this manuscript I review some of our recent findings and the strategies used to dissect this process.
Resumo:
The pattern of cell proliferation in the Drosophila imaginal wing primordium is spatially and temporally heterogeneous. Direct visualization of cells in S, G2, and mitosis phases of the cell cycle reveals several features invariant throughout development. The fraction of cells in the disc in the different cell cycle stages is constant, the majority remaining in G1. Cells in the different phases of the cell cycle mainly appear in small synchronic clusters that are nonclonally derived but result from changing local cell-cell interactions. Cluster synchronization occurs before S and in the G2/M phases. Rates of cell division are neither constant nor clonal features. Cell cycle progression is linear rather than concentric. Clusters appear throughout the disc but with symmetries related to presumptive wing patterns, compartment boundaries, and vein clonal restrictions.
Resumo:
We have sequenced the region of DNA adjacent to and including the flightless (fli) gene of Drosophila melanogaster and molecularly characterized four transcription units within it, which we have named tweety (twe), flightless (fli), dodo (dod), and penguin (pen). We have performed deletion and transgenic analysis to determine the consequences of the quadruple gene removal. Only the flightless gene is vital to the organism; the simultaneous absence of the other three allows the overriding majority of individuals to develop to adulthood and to fly normally. These gene deletion results are evaluated in the context of the redundancy and degeneracy inherent in many genetic networks. Our cDNA analyses and data-base searches reveal that the predicted dodo protein has homologs in other eukaryotes and that it is made up of two different domains. The first, designated WW, is involved in protein-protein interactions and is found in functionally diverse proteins including human dystrophin. The second is involved in accelerating protein folding and unfolding and is found in Escherichia coli in a new family of peptidylprolyl cis-trans isomerases (PPIases; EC 5.2.1.8). In eukaryotes, PPIases occur in the nucleus and the cytoplasm and can form stable associations with transcription factors, receptors, and kinases. Given this particular combination of domains, the dodo protein may well participate in a multisubunit complex involved in the folding and activation of signaling molecules. When we expressed the dodo gene product in Saccharomyces cerevisiae, it rescued the lethal phenotype of the ESS1 cell division gene.
Resumo:
The insertion of the blood retrotransposon into the untranslated region of exon 7 of the sn-glycerol-3-phosphate dehydrogenase-encoding gene (Gpdh) in Drosophila melanogaster induces a GPDH isozyme-GPDH-4-and alters the pattern of expression of the three normal isozymes-GPDH-1 to GPDH-3. The process of transcript terminus formation inside the retrotransposon insertion reduces the level of the Gpdh transcript that contains exon 8 and increases the level of the transcript that contains exons 1-7. The induced GPDH-4 isozyme is a translation product of the three transcripts that contain fragments of the blood retrotransposon. The mechanism of mutagenesis by the blood insertion is postulated to involve the pause or termination of transcription within the blood sequence, which in turn is caused by the interference of a DNA-binding protein with the RNA polymerase. Thus, we show the formation of a new functional GPDH protein by the insertion of a transposable element and discuss the evolutionary significance of this phenomenon.
Resumo:
We have identified another Drosophila GTP-binding protein (G protein) alpha subunit, dGq alpha-3. Transcripts encoding dGq alpha-3 are derived from alternative splicing of the dGq alpha locus previously shown to encode two visual-system-specific transcripts [Lee, Y.-J., Dobbs, M.B., Verardi, M.L. & Hyde, D.R. (1990) Neuron 5, 889-898]. Immunolocalization studies using dGq alpha-3 isoform-specific antibodies and LacZ fusion genes show that dGq alpha-3 is expressed in chemosensory cells of the olfactory and taste structures, including a subset of olfactory and gustatory neurons, and in cells of the central nervous system, including neurons in the lamina ganglionaris. These data are consistent with a variety of roles for dGq alpha-3, including mediating a subset of olfactory and gustatory responses in Drosophila, and supports the idea that some chemosensory responses use G protein-coupled receptors and the second messenger inositol 1,4,5-trisphosphate.
Resumo:
To ascertain the mechanism by which nucleosomes are assembled by factors derived from Drosophila embryos, two proteins termed Drosophila chromatin assembly factors (CAFs) 1 and 4 (dCAF-1 and dCAF-4) were fractionated and purified from a Drosophila embryo extract. The assembly of chromatin by dCAF-1, dCAF-4, purified histones, ATP, and DNA is a process that generates regularly spaced nucleosomal arrays with a repeat length that resembles that of bulk native Drosophila chromatin and is not obligatorily coupled to DNA replication. The assembly of chromatin by dCAF-1 and dCAF-4 is nearly complete within 10 min. The dCAF-1 activity copurified with the Drosophila version of chromatin assembly factor-1 (CAF-1), a factor that has been found to be required for the assembly of chromatin during large tumor (T) antigen-mediated, simian virus 40 (SV40) origin-dependent DNA replication. The dCAF-4 activity copurified with a 56-kDa core-histone-binding protein that was purified to > 90% homogeneity.
Resumo:
Adrogenesis, development from paternal but not maternal chromosomes, can be induced to occur in some organisms, including vertebrates, but has only been reported to occur naturally in interspecific hybrids of the Sicilian stick insect. Androgenesis has not been described previously in Drosophila. We now report the recovery of androgenetic offspring from Drosophila melanogaster females mutant for a gene that affects an oocyte- and embryo-specific alpha-tubulin. The androgenetic exceptions are X,X diploid females that develop from haploid embryos and express paternal markers on all 4 chromosomes. The exceptional females arise by fusion of haploid cleavage nuclei or failure of newly replicated haploid chromosomes to segregate, rather than fusion of two inseminating sperm. The frequency of androgenetic offspring is greatly enhanced by a partial loss-of-function mutant of the NCD (nonclaret disjunctional) microtubule motor protein, suggesting that wild-type NCD functions is pronuclear fusion. Diploidization of haploid paternal chromosome complements results in complete genetic homozygosity, which could facilitate studies of gene variation and mutational load in populations.
Resumo:
Biologists require genetic as well as molecular tools to decipher genomic information and ultimately to understand gene function. The Berkeley Drosophila Genome Project is addressing these needs with a massive gene disruption project that uses individual, genetically engineered P transposable elements to target open reading frames throughout the Drosophila genome. DNA flanking the insertions is sequenced, thereby placing an extensive series of genetic markers on the physical genomic map and associating insertions with specific open reading frames and genes. Insertions from the collection now lie within or near most Drosophila genes, greatly reducing the time required to identify new mutations and analyze gene functions. Information revealed from these studies about P element site specificity is being used to target the remaining open reading frames.
Resumo:
Ras CAAX (C = cysteine, A = aliphatic amino acid, and X = any amino acid) peptidomimetic inhibitors of farnesyl protein transferase suppress Ras-dependent cell transformation by preventing farnesylation of the Ras oncoprotein. These compounds are potential anticancer agents for tumors associated with Ras mutations. The peptidomimetic FTI-254 was tested for Ras1-inhibiting activity in whole animals by injection of activated Ras1val12 Drosophila larvae. FTI-254 decreased the ability of Ras1val12 to form supernumerary R7 photoreceptor cells in the compound eye of transformed flies. In contrast, it had no effect on the related supernumerary R7 phenotypes of flies transformed with either the activated sevenless receptor tyrosine kinase, Raf kinase, or a chimeric Ras1val12 protein that is membrane associated through myristylation instead of isoprenylation. Therefore, FTI-254 acts as an isoprenylation inhibitor to selectively inhibit Ras1val12 signaling activity in a whole-animal model system.
Resumo:
Recently many exciting advances have been achieved in our understanding of Drosophila meiosis due to combined cytological and genetic approaches. New techniques have permitted the characterization of chromosome position and spindle formation in female meiosis I. The proteins encoded by the nod and ncd genes, two genes known to be needed for the proper partitioning of chromosomes lacking exchange events, have been identified and found to be kinesin-like motors. The effects of mutations in these genes on the spindle and chromosomes, together with the localization of the proteins, have yielded a model for the mechanism of female meiosis I. In male meiosis I, the chromosomal regions responsible for homolog pairing have been resolved to the level of specific DNA sequences. This provides a foundation for elucidating the molecular basis of meiotic pairing. The cytological techniques available in Drosophila also have permitted inroads into the regulation of sister-chromatid segregation. The products of two genes (mei-S332 and ord) essential for sister-chromatid cohesion have been identified recently. Additional advances in understanding Drosophila meiosis are the delineation of a functional centromere by using minichromosome derivatives and the identification of several regulatory genes for the meiotic cell cycle.
Resumo:
In a search for retinoid X receptor-like molecules in Drosophila, we have identified an additional member of the nuclear receptor superfamily, XR78E/F. In the DNA-binding domain, XR78E/F is closely related to the mammalian receptor TR2, as well as to the nuclear receptors Coup-TF and Seven-up. We demonstrate that XR78E/F binds as a homodimer to direct repeats of the sequence AGGTCA. In transient transfection assays, XR78E/F represses ecdysone signaling in a DNA-binding-dependent fashion. XR78E/F has its highest expression in third-instar larvae and prepupae. These experiments suggest that XR78E/F may play a regulatory role in the transcriptional cascade triggered by the hormone ecdysone in Drosophila.
Resumo:
Fasciclin II (Fas II), an NCAM-like cell adhesion molecule in Drosophila, is expressed on a subset of embryonic axons and controls selective axon fasiculation. Fas II is also expressed in imaginal discs. Here we use genetic analysis to show that Fas II is required for the control of proneural gene expression. Clusters of cells in the eye-antennal imaginal disc express the achaete proneural gene and give rise to mechanosensory neurons; other clusters of cells express the atonal gene and give rise to ocellar photoreceptor neurons. In fasII loss-of-function mutants, the expression of both proneural genes is absent in certain locations, and, as a result, the corresponding sensory precursors fail to develop. In fasII gain-of-function conditions, extra sensory structures arise from this same region of the imaginal disc. Mutations in the Abelson tyrosine kinase gene show dominant interactions with fasII mutations, suggesting that Abl and Fas II function in a signaling pathway that controls proneural gene expression.
Resumo:
We have designed a rapid cloning and screening strategy to identify new members of the nuclear hormone receptor superfamily that are expressed during the onset of Drosophila metamorphosis. Using this approach, we isolated three Drosophila genes, designated DHR38, DHR78, and DHR96. All three genes are expressed throughout third-instar larval and prepupal development. DHR38 is the Drosophila homolog of NGFI-B and binds specifically to an NGFI-B response element. DHR78 and DHR96 are orphan receptor genes. DHR78 is induced by 20-hydroxyecdysone (20E) in cultured larval organs, and its encoded protein binds to two AGGTCA half-sites arranged as either direct or palindromic repeats. DHR96 is also 20E-inducible, and its encoded protein binds selectively to the hsp27 20E response element. The 20E receptor can bind to each of the sequences recognized by DHR78 and DHR96, indicating that these proteins may compete with the receptor for binding to a common set of target sequences.
Resumo:
Among fruit-fly species of the genus Drosophila there is remarkable variation in sperm length, with some species producing gigantic sperm (e.g., > 10 times total male body length). These flies are also unusual in that males of some species exhibit a prolonged adult nonreproductive phase. We document sperm length, body size, and sex-specific ages of reproductive maturity for 42 species of Drosophila and, after controlling for phylogeny, test hypotheses to explain the variation in rates of sexual maturation. Results suggest that delayed male maturity is a cost of producing long sperm. A possible physiological mechanism to explain the observed relationship is discussed.
Resumo:
Mating triggers behavioral and physiological changes in the Drosophila melanogaster female, including an elevation of egg laying. Seminal fluid molecules from the male accessory gland are responsible for initial behavioral changes, but persistence of these changes requires stored sperm. Using genetic analysis, we have identified a seminal fluid protein that is responsible for an initial elevation of egg laying. This molecule, Acp26Aa, has structural features of a prohormone and contains a region with amino acid similarity to the egg-laying hormone of Aplysia. Acp26Aa is transferred to the female during mating, where it undergoes processing. Here we report the generation and analysis of mutants, including a null, in Acp26Aa. Females mated to male flies that lack Acp26Aa lay fewer eggs than do mates of normal males. This effect is apparent only on the first day after mating. The null mutation has no other detectable physiological or behavioral effects on the male or the mated female.