229 resultados para Cloning Vectors
Resumo:
Five extremely thermophilic Archaea from hydrothermal vents were isolated, and their DNA polymerases were cloned and expressed in Escherichia coli. Protein splicing elements (inteins) are present in many archaeal DNA polymerases, but only the DNA polymerase from strain GB-C contained an intein. Of the five cloned DNA polymerases, the Thermococcus sp. 9 degrees N-7 DNA polymerase was chosen for biochemical characterization. Thermococcus sp. 9 degrees N-7 DNA polymerase exhibited temperature-sensitive strand displacement activity and apparent Km values for DNA and dNTP similar to those of Thermococcus litoralis DNA polymerase. Six substitutions in the 3'-5' exonuclease motif I were constructed in an attempt to reduce the 3'-5' exonuclease activity of Thermococcus sp. 9 degrees N-7 DNA polymerase. Five mutants resulted in no detectable 3'-5' exonuclease activity, while one mutant (Glul43Asp) had <1% of wild-type activity.
Resumo:
The coding sequence of rat MEK kinase 1 (MEKK1) has been determined from multiple, independent cDNA clones. The cDNA is full-length based on the presence of stop codons in all three reading frames of the 5' untranslated region. Probes from the 5' and the 3' coding sequences both hybridize to a 7-kb mRNA. The open reading frame is 4.5 kb and predicts a protein with molecular mass of 161,225 Da, which is twice the size of the previously published MEKK1 sequence and reveals 801 amino acids of novel coding sequence. The novel sequence contains two putative pH domains, two proline-rich regions, and a cysteine-rich region. Antisera to peptides derived from this new sequence recognize an endogenous protein in human and rodent cells of 195 kDa, consistent with the size of the expressed rat MEKK1 clone. Endogenous and recombinant rat MEKK1 are enriched in membranes; little of either is found in soluble fractions. Expression of recombinant rat MEKK1 leads to activation of three mitogen-activated protein kinase modules in the order c-Jun N-terminal kinase/stress-activated protein kinase > p38 mitogen-activated protein kinase = extracellular signal-regulated kinase 2.
Resumo:
Cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-regulated, cAMP-activated chloride channel located in the apical membrane of many epithelial secretory cells. Here we report cloning of a cAMP-activated epithelial basolateral chloride conductance regulator (EBCR) that appears to be a basolateral CFTR counterpart. This novel chloride channel or regulator shows 49% identity with multidrug resistance-associated protein (MRP) and 29% identity with CFTR. On expression in Xenopus oocytes, EBCR confers a cAMP-activated chloride conductance that is inhibited by the chloride channel blockers niflumic acid, 5-nitro-2-(3-phenylpropylamine)benzoic acid, and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. Northern blot analysis reveals high expression in small intestine, kidney, and liver. In kidney, immunohistochemistry shows a conspicuous basolateral localization mainly in the thick ascending limb of Henle's loop, distal convoluted tubules and to a lesser extent connecting tubules. These data suggest that in the kidney EBCR is involved in hormone-regulated chloride reabsorption.
Resumo:
We have purified from hamster liver a second cysteine protease that cleaves and activates sterol regulatory element binding proteins (SREBPs). cDNA cloning revealed that this enzyme is the hamster equivalent of Mch3, a human enzyme that is related to the interleukin 1beta converting enzyme. We call this enzyme Mch3/SCA-2. It is 54% identical to hamster CPP32/SCA-1, a cysteine protease that was earlier shown to cleave SREBPs at a conserved Asp between the basic helix-loop-helix leucine zipper domain and the membrane attachment domain. This cleavage liberates an NH2-terminal fragment of approximately 460 amino acids that activates transcription of genes encoding the low density lipoprotein receptor and enzymes of cholesterol synthesis. Mch3/SCA-2 and CPP32/SCA-I are synthesized as inactive 30-35 kDa precursors that are thought to be cleaved during apoptosis to generate active fragments of approximately 20 and approximately 10 kDa. The current data lend further support to the notion that SREBPs are cleaved and activated as part of the program in programmed cell death.
Resumo:
The androgen receptor (AR) is a member of the steroid receptor superfamily that plays an important role in male sexual differentiation and prostate cell proliferation. Mutations or abnormal expression of AR in prostate cancer can play a key role in the process that changes prostate cancer from androgen-dependent to an androgen-independent stage. Using a yeast two-hybrid system, we were able to isolate a ligand-dependent AR-associated protein (ARA70), which functions as an activator to enhance AR transcriptional activity 10-fold in the presence of 10(-10) M dihydrotestosterone or 10(-9) M testosterone, but not 10(-6) M hydroxyflutamide in human prostate cancer DU145 cells. Our data further indicated that ARA70 Will only slightly induce the transcriptional activity of other steroid receptors such as estrogen receptor, glucocorticoid receptor, and progesterone receptor in DU145 cells. Together, these data suggest that AR may need a specific coactivator(s) such as ARA70 for optimal androgen activity.
Resumo:
We have isolated a cDNA encoding human ceramide glucosyltransferase (glucosylceramide synthase, UDP-glucose:N-acylsphingosine D-glucosyltransferase, EC 2.4.1.80) by expression cloning using as a recipient GM-95 cells lacking the enzyme. The enzyme catalyzes the first glycosylation step of glycosphingolipid synthesis and the product, glucosylceramide, serves as the core of more than 300 glycosphingolipids. The cDNA has a G+C-rich 5' untranslated region of 290 nucleotides and the open reading frame encodes 394 amino acids (44.9 kDa). A hydrophobic segment was found near the N terminus that is the potential signal-anchor sequence. In addition, considerable hydrophobicity was detected in the regions close to the C terminus, which may interact with the membrane. A catalytically active enzyme was produced from Escherichia coli transfected with the cDNA. Northern blot analysis revealed a single transcript of 3.5 kb, and the mRNA was widely expressed in organs. The amino acid sequence of ceramide glucosyltransferase shows no significant homology to ceramide galactosyltransferase, which indicates different evolutionary origins of these enzymes.
Resumo:
PCR was used to isolate nucleotide sequences that may encode novel members of the neuropeptide Y receptor family. By use of a PCR product as a hybridization probe, a full-length human cDNA was isolated that encodes a 375-aa protein with a predicted membrane topology identifying it as a member of the G-protein-coupled receptor superfamily. After stable transfection of the cDNA into human embryonic kidney 293 cells, the receptor exhibited high affinity (Kd = 2.8 nM) for 125I-labeled human pancreatic polypeptide (PP). Competition binding studies in whole cells indicated the following rank order of potency: human PP = bovine PP > or = human [Pro34]peptide YY > rat PP > human peptide YY = human neuropeptide Y. Northern blot analysis revealed that human PP receptor mRNA is most abundantly expressed in skeletal muscle and, to a lesser extent, in lung and brain tissue. A rat cDNA clone encoding a high-affinity PP receptor that is 74% identical to the human PP receptor at the amino acid level was also isolated. These receptor clones will be useful in elucidating the functional role of PP and designing selective PP receptor agonists and antagonists.
Resumo:
The p53 protein is an attractive target for immunotherapy, because mutations in the p53 gene are the most common genetic alterations found in human tumors. These mutations result in high levels of p53 protein in the tumor cell, whereas the expression level of wild-type p53 in nonmalignant tissue is usually much lower. Several canarypox virus recombinants expressing human or murine p53 in wild-type or mutant form were constructed. Immunization with these viruses protected BALB/c mice from a challenge with an isogenic and highly tumorigenic mouse fibroblast tumor cell line expressing high levels of mutant p53. The tumor protection was equally effective regardless of whether wild-type or mutant p53 was used for the immunization, indicating that the immunologic response was not dependent on any particular p53 mutation and that immunization with this live virus vaccine works effectively against mutant p53 protein expressed in a tumor cell. In tumors escaping immunologic rejection, the expression of the p53 protein was commonly down-regulated.
Resumo:
Transgenic mouse lines have been developed that express the tv-a receptor under the control of the chicken beta-actin promoter. These mice express the tv-a receptor in most or all tissues and in the early embryo. An avian leukosis virus (ALV)-based retroviral vector system was used for the efficient delivery of genes into preimplantation mouse embryos from these transgenic lines. Experimental animals could be generated quickly and easily by infecting susceptible blastocysts with ALV-based retroviral vectors. Expression of the delivered genes was controlled by either the constitutive viral promoter contained in the long terminal repeat or an internal nonviral tissue-specific promoter. Mating the infected founder chimeric animals produced animals that carry the ALV provirus as a transgene. A subset of the integrated proviruses expressed the chloramphenicol acetyltransferase reporter gene from either the promoter in the long terminal repeat or an internal promoter, which we believe indicates that many of the sites that are accessible to viral DNA insertion in preimplantation embryos are incompatible with expression in older animals. This approach should prove useful for studies on murine cell lineage and development, providing models for studying oncogenesis, and testing gene therapy strategies.
Resumo:
Baculovirus inhibitors of apoptosis (IAPs) act in insect cells to prevent cell death. Here we describe three mammalian homologs of IAP, MIHA, MIHB, and MIHC, and a Drosophila IAP homolog, DIHA. Each protein bears three baculovirus IAP repeats and an N-terminal ring finger motif. Apoptosis mediated by interleukin 1beta converting enzyme (ICE), which can be inhibited by Orgyia pseudotsugata nuclear polyhedrosis virus IAP (OpIAP) and cowpox virus crmA, was also inhibited by MIHA and MIHB. As MIHB and MIHC were able to bind to the tumor necrosis factor receptor-associated factors TRAF1 and TRAF2 in yeast two-hybrid assays, these results suggest that IAP proteins that inhibit apoptosis may do so by regulating signals required for activation of ICE-like proteases.
Resumo:
We have generated a chimeric gene transfer vector that combines the simplicity of plasmids with the infectivity and long-term expression of retroviruses. We replaced the env gene of a Moloney murine leukemia virus-derived provirus by a foreign gene, generating a plasmid that upon transfer to tumor cells generates noninfectious retroviral particles carrying the transgene. We added to this plasmid an independent expression cassette comprising a cytomegalovirus promoter, an amphotropic retroviral envelope, and a polyadenylylation signal from simian virus 40. These constructs were designed to minimize the risk of recombination generating replication-competent retroviruses. Their only region of homology is a 157-bp sequence with 53% identity. We show that the sole transfection of this plasmid in various cell lines generates infectious but defective retroviral particles capable of efficiently infecting and expressing the transgene. The formation of infectious particles allows the transgene propagation in vitro. Eight days after transfection in vitro, the proportion of cells expressing the transgene is increased by 10-60 times. There was no evidence of replication-competent retrovirus generation in these experiments. The intratumoral injection of this plasmid, but not of the control vector lacking the env gene, led to foci of transgene-expressing cells, suggesting that the transgene had propagated in situ. Altogether, these "plasmoviruses" combine advantages of viral and non-viral vectors. They should be easy to produce in large quantity as clinical grade materials and should allow efficient and safe in situ targeting of tumor cells.
Resumo:
Adenovirus (Ad) vectors have been extensively used to deliver recombinant genes to a great variety of cell types in vitro and in vivo. Ad-based vectors are available that replace the Ad early region 1 (E1) with recombinant foreign genes. The resultant E1-deleted vectors can then be propagated on 293 cells, a human embryonal kidney cell line that constitutively expresses the E1 genes. Unfortunately, infection of cells and tissues in vivo results in low-level expression of Ad early and late proteins (despite the absence of E1 activity) resulting in immune recognition of virally infected cells. The infected cells are subsequently eliminated, resulting in only a transient expression of foreign genes in vivo. We hypothesize that a second-generation Ad vector with a deletion of viral genes necessary for Ad genome replication should block viral DNA replication and decrease viral protein production, resulting in a diminished immune response and extended duration of foreign gene expression in vivo. As a first step toward the generation of such a modified vector, we report the construction of cell lines that not only express the E1 genes but also constitutively express the Ad serotype 2 140-kDa DNA polymerase protein, one of three virally encoded proteins essential for Ad genome replication. The Ad polymerase-expressing cell lines support the replication and growth of H5ts36, an Ad with a temperature-sensitive mutation of the Ad polymerase protein. These packaging cell lines can be used to prepare Ad vectors deleted for the E1 and polymerase functions, which should facilitate development of viral vectors for gene therapy of human diseases.
Resumo:
A pantropic pseudotyped retroviral vector containing the envelope protein of vesicular stomatitis virus was used as a gene transfer vector in the dwarf surfclam, Mulinia lateralis. These pantropic retroviral vectors have an extremely broad host cell range and can infect many nonmammalian species. Newly fertilized dwarf surfclam eggs were electroporated at 700 V in the presence of 1 x 10(4) colony-forming units of pantropic pseudotyped retroviral particles. Infection was well tolerated and did not affect the survival rate of the embryos. Gametes collected from P1 presumptive transgenic animals were analyzed for the presence of provirus by PCR, and in different experiments 13-33% of the gamete pools were positive for the transgene. Dot blot hybridization of DNA samples from the F1 offspring of two different crosses between infected P1 and wild-type individuals revealed that 28% and 31% of F1 offspring were transgenic, respectively. Southern blot analysis of DNA isolated from PCR-positive F1 animals confirmed integration of a single copy of the provirus into the host genome. Thus, the germ lines of these two P1 transgenic animals were mosaic for the transgene. Expression of beta-galactosidase encoded by the provirus was detected in transgenic but not control surfclam embryos. Pantropic pseudotyped retroviral vectors provide a useful method for the stable introduction of foreign genetic information into surfclams and may facilitate the introduction of desirable genetic traits into commercially important shellfish and crustaceans.
Resumo:
A family of proteins involved in cell cycle progression, DNA recombination, and the detection of DNA damage has been recently identified. One of the members of this family, human ATM, is defective in the cells of patients with ataxia telangiectasia and is involved in detection and response of cells to damaged DNA. Other members include Mei-41 (Drosophila melanogaster), Mec1p (Saccharomyces cerevisiae), and Rad3 (Schizosaccharomyces pombe), which are required for the S and G2/M checkpoints, as well as FRAP (Homo sapiens) and Torl/2p (S. cerevisiae), which are involved in a rapamycin-sensitive pathway leading to G1 cell cycle progression. We report here the cloning of a human cDNA encoding a protein with significant homology to members of this family. Three overlapping clones isolated from a Jurkat T-cell cDNA library revealed a 7.9-kb open reading frame encoding a protein that we have named FRP1 (FRAP-related protein) with 2644 amino acids and a predicted molecular mass of 301 kDa. Using fluorescence in situ hybridization and a full-length cDNA FRP1 clone, the FRP1 gene has been mapped to the chromosomal locus 3q22-q24. FRP1 is most closely related to three of the PIK-related kinase family members involved in checkpoint function--Mei-41, Mec1p, and Rad3--and as such may be the functional human counterpart of these proteins.
Resumo:
Release of Ca2+ stored in endoplasmic reticulum is a ubiquitous mechanism involved in cellular signal transduction, proliferation, and apoptosis. Recently, sphingolipid metabolites have been recognized as mediators of intracellular Ca2+ release, through their action at a previously undescribed intracellular Ca2+ channel. Here we describe the molecular cloning and characterization of a protein that causes the expression of sphingosyl-phosphocholine-mediated Ca2+ release when its complementary RNA is injected into Xenopus oocytes. SCaMPER (for sphingolipid Ca2+ release-mediating protein of endoplasmic reticulum) is an 181 amino acid protein with two putative membrane-spanning domains. SCaMPER is incorporated into microsomes upon expression in SO cells or after translation in vitro. It mediates Ca2+ release at 4 degrees C as well as 22 degrees C, consistent with having ion channel function. The EC50 for Ca2+ release from Xenopus oocytes is 40 microM, similar to sphingosyl-phosphocholine-mediated Ca2+ release from permeabilized mammalian cells. Because Ca2+ release is not blocked by ryanodine or La3+, the activity described here is distinct from the Ca2+ release activity of the ryanodine receptor and the inositol 1,4,5-trisphosphate receptor. The properties of SCaMPER are identical to those of the sphingolipid-gated Ca2+ channel that we have previously described. These findings suggest that SCaMPER is a sphingolipid-gated Ca2+-permeable channel and support its role as a mediator of this pathway for intracellular Ca2+ signal transduction.