175 resultados para Caveolin-1-deficient Mice


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gap junctional communication between microglia was investigated at rat brain stab wounds and in primary cultures of rat and mouse cells. Under resting conditions, rat microglia (FITC-isolectin-B4-reactive cells) were sparsely distributed in the neocortex, and most (95%) were not immunoreactive for Cx43, a gap junction protein subunit. At brain stab wounds, microglia progressively accumulated over several days and formed aggregates that frequently showed Cx43 immunoreactivity at interfaces between cells. In primary culture, microglia showed low levels of Cx43 determined by Western blotting, diffuse intracellular Cx43 immunoreactivity, and a low incidence of dye coupling. Treatment with the immunostimulant bacterial lipopolysaccharide (LPS) or the cytokines interferon-γ (INF-γ) or tumor necrosis factor-α (TNF-α) one at a time did not increase the incidence of dye coupling. However, microglia treated with INF-γ plus LPS showed a dramatic increase in dye coupling that was prevented by coapplication of an anti-TNF-α antibody, suggesting the release and autocrine action of TNF-α. Treatment with INF-γ plus TNF-α also greatly increased the incidence of dye coupling and the Cx43 levels with translocation of Cx43 to cell–cell contacts. The cytokine-induced dye coupling was reversibly inhibited by 18α-glycyrrhetinic acid, a gap junction blocker. Cultured mouse microglia also expressed Cx43 and developed dye coupling upon treatment with cytokines, but microglia from homozygous Cx43-deficient mice did not develop significant dye coupling after treatment with either INF-γ plus LPS or INF-γ plus TNF-α. This report demonstrates that microglia can communicate with each other through gap junctions that are induced by inflammatory cytokines, a process that may be important in the elaboration of the inflammatory response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

V(D)J recombination generates a remarkably diverse repertoire of antigen receptors through the rearrangement of germline DNA. Terminal deoxynucleotidyl transferase (TdT), a polymerase that adds random nucleotides (N regions) to recombination junctions, is a key enzyme contributing to this diversity. The current model is that TdT adds N regions during V(D)J recombination by random collision with the DNA ends, without a dependence on other cellular factors. We previously demonstrated, however, that V(D)J junctions from Ku80-deficient mice unexpectedly lack N regions, although the mechanism responsible for this effect remains undefined in the mouse system. One possibility is that junctions are formed in these mice during a stage in development when TdT is not expressed. Alternatively, Ku80 may be required for the expression, nuclear localization or enzymatic activity of TdT. Here we show that V(D)J junctions isolated from Ku80-deficient fibroblasts are devoid of N regions, as were junctions in Ku80-deficient mice. In these cells TdT protein is abundant at the time of recombination, localizes properly to the nucleus and is enzymatically active. Based on these data, we propose that TdT does not add to recombination junctions through random collision but is actively recruited to the V(D)J recombinase complex by Ku80.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various genetic conditions produce dysfunctional osteoclasts resulting in osteopetrosis or osteosclerosis. These include human pycnodysostosis, an autosomal recessive syndrome caused by cathepsin K mutation, cathepsin K-deficient mice, and mitf mutant rodent strains. Cathepsin K is a highly expressed cysteine protease in osteoclasts that plays an essential role in the degradation of protein components of bone matrix. Cathepsin K also is expressed in a significant fraction of human breast cancers where it could contribute to tumor invasiveness. Mitf is a member of a helix–loop–helix transcription factor subfamily, which contains the potential dimerization partners TFE3, TFEB, and TFEC. In mice, dominant negative, but not recessive, mutations of mitf, produce osteopetrosis, suggesting a functional requirement for other family members. Mitf also has been found—and TFE3 has been suggested—to modulate age-dependent changes in osteoclast function. This study identifies cathepsin K as a transcriptional target of Mitf and TFE3 via three consensus elements in the cathepsin K promoter. Additionally, cathepsin K mRNA and protein were found to be deficient in mitf mutant osteoclasts, and overexpression of wild-type Mitf dramatically up-regulated expression of endogenous cathepsin K in cultured human osteoclasts. Cathepsin K promoter activity was disrupted by dominant negative, but not recessive, mouse alleles of mitf in a pattern that closely matches their osteopetrotic phenotypes. This relationship between cathepsin K and the Mitf family helps explain the phenotypic overlap of their corresponding deficiencies in pycnodysostosis and osteopetrosis and identifies likely regulators of cathepsin K expression in bone homeostasis and human malignancy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactivation of latent herpesviruses is a particular problem in immunocompromised individuals, such as AIDS patients, who lack effective CD4 T helper cell function. An important question is whether residual immune defenses can be mobilized to combat such opportunistic infections, in the absence of CD4 T cells. In the present study, we used a mouse model of opportunistic infection to determine whether stimulation via CD40 could substitute for CD4 T cell function in preventing reactivation of a latent herpesvirus. Treatment with an agonistic antibody to CD40 was highly effective in preventing reactivation of latent murine gammaherpesvirus (MHV-68) in the lungs of CD4 T cell-deficient mice. CD8+ T cells were essential for this effect, whereas virus-specific serum antibody was undetectable and IFN-γ production was unchanged. This demonstration that immunostimulation via CD40 can replace CD4 T cell help in controlling latent virus in vivo has potential implications for the development of novel therapeutic agents to prevent viral reactivation in immunocompromised patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cleft lip and palate syndromes are among the most common congenital malformations in humans. Mammalian palatogenesis is a complex process involving highly regulated interactions between epithelial and mesenchymal cells of the palate to permit correct positioning of the palatal shelves, the remodeling of the extracellular matrix (ECM), and subsequent fusion of the palatal shelves. Here we show that several matrix metalloproteinases (MMPs), including a cell membrane-associated MMP (MT1-MMP) and tissue inhibitor of metalloproteinase-2 (TIMP-2) were highly expressed by the medial edge epithelium (MEE). MMP-13 was expressed both in MEE and in adjacent mesenchyme, whereas gelatinase A (MMP-2) was expressed by mesenchymal cells neighboring the MEE. Transforming growth factor (TGF)-β3-deficient mice, which suffer from clefting of the secondary palate, showed complete absence of TIMP-2 in the midline and expressed significantly lower levels of MMP-13 and slightly reduced levels of MMP-2. In concordance with these findings, MMP-13 expression was strongly induced by TGF-β3 in palatal fibroblasts. Finally, palatal shelves from prefusion wild-type mouse embryos cultured in the presence of a synthetic inhibitor of MMPs or excess of TIMP-2 failed to fuse and MEE cells did not transdifferentiate, phenocopying the defect of the TGF-β3-deficient mice. Our observations indicate for the first time that the proteolytic degradation of the ECM by MMPs is a necessary step for palatal fusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many peptide hormone and neurotransmitter receptors belonging to the seven membrane-spanning G protein-coupled receptor family have been shown to transmit ligand-dependent mitogenic signals in vitro. However, the physiological roles of the mitogenic activity through G protein-coupled receptors in vivo remain to be elucidated. Here we have generated G protein-coupled cholecystokinin (CCK)-B/gastrin receptor deficient-mice by gene targeting. The homozygous mice showed a remarkable atrophy of the gastric mucosa macroscopically, even in the presence of severe hypergastrinemia. The atrophy was due to a decrease in parietal cells and chromogranin A-positive enterochromaffin-like cells expressing the H+,K(+)-ATPase and histidine decarboxylase genes, respectively. Oral administration of a proton pump inhibitor, omeprazole, which induced hypertrophy of the gastric mucosa with hypergastrinemia in wild-type littermates, did not eliminate the gastric atrophy of the homozygotes. These results clearly demonstrated that the G protein-coupled CCK-B/gastrin receptor is essential for the physiological as well as pathological proliferation of gastric mucosal cells in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chimeric mice in which lymphocytes are deficient in the Syk tyrosine kinase have been created. Compared with Syk-positive controls, mice with Syk -/- lymphocytes display substantial depletion of intraepithelial gamma delta T cells in the skin and gut, with developmental arrest occurring after antigen receptor gene rearrangement. In this dependence on Syk, subsets of intraepithelial gamma delta T cells are similar to B cells, but distinct from splenic gamma delta T cells that develop and expand in Syk-deficient mice. The characteristic associations of certain T-cell receptor V gamma/V delta gene rearrangements with specific epithelia are also disrupted by Syk deficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Olfactory marker protein (OMP) is an abundant, phylogentically conserved, cytoplasmic protein of unknown function expressed almost exclusively in mature olfactory sensory neurons. To address its function, we generated OMP-deficient mice by gene targeting in embryonic stem cells. We report that these OMP-null mice are compromised in their ability to respond to odor stimull, providing insight to OMP function. The maximal electroolfactogram response of the olfactory neuroepithelium to several odorants was 20-40% smaller in the mutants compared with controls. In addition, the onset and recovery kinetics following isoamyl acetate stimulation are prolonged in the null mice. Furthermore, the ability of the mutants to respond to the second odor pulse of a pair is impaired, over a range of concentrations, compared with controls. These results imply that neural activity directed toward the olfactory bulb is also reduced. The bulbar phenotype observed in the OMP-null mouse is consistent with this hypothesis. Bulbar activity of tyrosine hydroxylase, the rate limiting enzyme of catecholamine biosynthesis, and content of the neuropeptide cholecystokinin are reduced by 65% and 50%, respectively. This similarity to postsynaptic changes in gene expression induced by peripheral olfactory deafferentation or naris blockade confirms that functional neural activity is reduced in both the olfactory neuroepithelium and the olfactory nerve projection to the bulb in the OMP-null mouse. These observations provide strong support for the conclusion that OMP is a novel modulatory component of the odor detection/signal transduction cascade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At least three distinct beta-adrenergic receptor (beta-AR) subtypes exist in mammals. These receptors modulate a wide variety of processes, from development and behavior, to cardiac function, metabolism, and smooth muscle tone. To understand the roles that individual beta-AR subtypes play in these processes, we have used the technique of gene targeting to create homozygous beta 1-AR null mutants (beta 1-AR -/-) in mice. The majority of beta 1-AR -/- mice die prenatally, and the penetrance of lethality shows strain dependence. Beta l-AR -/- mice that do survive to adulthood appear normal, but lack the chronotropic and inotropic responses seen in wild-type mice when beta-AR agonists such as isoproterenol are administered. Moreover, this lack of responsiveness is accompanied by markedly reduced stimulation of adenylate cyclase in cardiac membranes from beta 1-AR -/- mice. These findings occur despite persistent cardiac beta 2-AR expression, demonstrating the importance of beta 1-ARs for proper mouse development and cardiac function, while highlighting functional differences between beta-AR subtypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disruption of guanylyl cyclase-A (GC-A) results in mice displaying an elevated blood pressure, which is not altered by high or low dietary salt. However, atrial natriuretic peptide (ANP), a proposed ligand for GC-A, has been suggested as critical for the maintenance of normal blood pressure during high salt intake. In this report, we show that infusion of ANP results in substantial natriuresis and diuresis in wild-type mice but fails to cause significant changes in sodium excretion or urine output in GC-A-deficient mice. ANP, therefore, appears to signal through GC-A in the kidney. Other natriuretic/diuretic factors could be released from the heart. Therefore, acute volume expansion was used as a means to cause release of granules from the atrium of the heart. That granule release occurred was confirmed by measurements of plasma ANP concentrations, which were markedly elevated in both wild-type and GC-A-null mice. After volume expansion, urine output as well as urinary sodium and cyclic GMP excretion increased rapidly and markedly in wild-type mice, but the rapid increases were abolished in GC-A-deficient animals. These results strongly suggest that natriuretic/diuretic factors released from the heart function exclusively through GC-A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a novel approach to assay the ability of particular gene products to signal transitions in lymphocyte differentiation in vivo. The method involves transfection of test expression constructs into RAG-1-deficient embryonic stem cells, which are subsequently assayed by the RAG-2-deficient blastocyst complementation approach. We have used this method to demonstrate that expression of activated Ras in CD4-8- (double negative, DN) prothymocytes in vivo induces their differentiation into small CD4+8+ (double positive, DP) cortical thymocytes with accompanying expansion to normal thymocyte numbers. However, activated Ras expression in DP cells does not cause proliferation or maturation to CD4+8- or CD4-8+ (single positive) thymocytes. Therefore, signaling through Ras is sufficient for promoting differentiation of DN to DP cells, but further differentiation requires the activity of additional signaling pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of recombinantly produced ob protein were compared to those of food restriction in normal lean and genetically obese mice. Ob protein infusion into ob/ob mice resulted in large decreases in body and fat-depot weight and food intake that persisted throughout the study. Smaller decreases in body and fat-depot weights were observed in vehicle-treated ob/ob mice that were fed the same amount of food as that consumed by ob protein-treated ob/ob mice (pair feeding). In lean mice, ob protein infusion significantly decreased body and fat-depot weights, while decreasing food intake to a much lesser extent than in ob/ob mice. Pair feeding of lean vehicle-treated mice to the intake of ob protein-treated mice did not reduce body fat-depot weights. The potent weight-, adipose-, and appetite-reducing effects exerted by the ob protein in ob protein-deficient mice (ob/ob) confirm hypotheses generated from early parabiotic studies that suggested the existence of a circulating satiety factor of adipose origin. Pair-feeding studies provide compelling evidence that the ob protein exerts adipose-reducing effects in excess of those induced by reductions in food intake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent experimental evidence has focused attention to the role of two molecules, insulin receptor substrate 1 (IRS-1) and phosphatidylinositol 3-kinase (PI3-kinase), in linking the insulin receptor to glucose uptake; IRS-1 knockout mice are insulin resistant, and pharmacological inhibitors of PI3-kinase block insulin-stimulated glucose uptake. To investigate the role of PI3-kinase and IRS-1 in insulin-stimulated glucose uptake we examined whether stimulation of insulin-sensitive cells with platelet-derived growth factor (PDGF) or with interleukin 4 (IL-4) stimulates glucose uptake; the activated PDGF receptor (PDGFR) directly binds and activates PI3-kinase, whereas the IL-4 receptor (IL-4R) activates PI3-kinase via IRS-1 or the IRS-1-related molecule 4PS. We found that stimulation of 3T3-L1 adipocytes with PDGF resulted in tyrosine phosphorylation of the PDGFR and activation of PI3-kinase in these cells. To examine whether IL-4 stimulates glucose uptake, L6 myoblasts were engineered to overexpress GLUT4 as well as both chains of the IL-4R (L6/IL-4R/GLUT4); when these L6/IL-4R/GLUT4 myoblasts were stimulated with IL-4, IRS-1 became tyrosine phosphorylated and associated with PI3-kinase. Although PDGF and IL-4 can activate PI3-kinase in the respective cell lines, they do not possess insulin's ability to stimulate glucose uptake and GLUT4 translocation to the plasma membrane. These findings indicate that activation of PI3-kinase is not sufficient to stimulate GLUT4 translocation to the plasma membrane. We postulate that activation of a second signaling pathway by insulin, distinct from PI3-kinase, is necessary for the stimulation of glucose uptake in insulin-sensitive cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adenosine deaminase (ADA, EC 3.5.4.4) is a ubiquitous enzyme in the purine catabolic pathway. In contrast to the widespread tissue distribution of this enzyme, inherited ADA deficiency in human results in a tissue-specific severe combined immunodeficiency. To explain the molecular basis for this remarkable tissue specificity, we have used a genetic approach to study ADA deficiency. We demonstrate that ADA deficiency causes depletion of CD8low transitional and CD4+CD8+ double-positive thymocytes by an apoptotic mechanism. This effect is mediated by a p53-dependent pathway, since p53-deficient mice are resistant to the apoptosis induced by ADA deficiency. DNA damage, known to be caused by the abnormal accumulation of dATP in ADA deficiency, is therefore responsible for the ablation of T-cell development and for the immunodeficiency. The two thymocyte subsets most susceptible to apoptosis induced by ADA deficiency are also the two thymocyte subsets with the lowest levels of bcl-2 expression. We show that thymocytes from transgenic mice that overexpress bcl-2 in the thymus are rescued from apoptosis induced by ADA deficiency. Thus, the tissue specificity of the pathological effects of ADA deficiency is due to the low bcl-2 expression in CD8low transitional and CD4+CD8+ double-positive thymocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P-selectin, found in storage granules of platelets and endothelial cells, can be rapidly expressed upon stimulation. Mice lacking this membrane receptor exhibit a severe impairment of leukocyte rolling. We observed that, in addition to leukocytes, platelets were rolling in mesenteric venules of wild-type mice. To investigate the role of P-selectin in this process, resting or activated platelets from wild-type or P-selectin-deficient mice were fluorescently labeled and transfused into recipients of either genotype. Platelet-endothelial interactions were monitored by intravital microscopy. We observed rolling of either wild-type or P-selectin-deficient resting platelets on wild-type endothelium. Endothelial stimulation with the calcium ionophore A23187 increased the number of platelets rolling 4-fold. Activated P-selectin-deficient platelets behaved similarly, whereas activated wild-type platelets bound to leukocytes and were seen rolling together. Platelets of either genotype, resting or activated, interacted minimally with mutant endothelium even after A23187 treatment. The velocity of platelet rolling was 6- to 9-fold greater than that of leukocytes. Our results demonstrate that (i) platelets roll on endothelium in vivo, (ii) this interaction requires endothelial but not platelet P-selectin, and (iii) platelet rolling appears to be independent of platelet activation, indicating constitutive expression of a P-selectin ligand(s) on platelets. We have therefore observed an interesting parallel between platelets and leukocytes in that both of these blood cell types roll on stimulated vessel wall and that this process is dependent on the expression of endothelial P-selectin.