164 resultados para phytochrome mRNA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fact that animal introns are not spliced out in plants suggests that recognition of pre-mRNA splice sites differs between the two kingdoms. In plants, little is known about proteins required for splicing, as no plant in vitro splicing system is available. Several essential splicing factors from animals, such as SF2/ASF and SC-35, belong to a family of highly conserved proteins consisting of one or two RNA binding domain(s) (RRM) and a C-terminal Ser/Arg-rich (SR or RS) domain. These animal SR proteins are required for splice site recognition and spliceosome assembly. We have screened for similar proteins in plants by using monoclonal antibodies specific for a phosphoserine epitope of the SR proteins (mAb1O4) or for SF2/ASF. These experiments demonstrate that plants do possess SR proteins, including SF2/ASF-like proteins. Similar to the animal SR proteins, this group of proteins can be isolated by two salt precipitations. However, compared to the animal SR proteins, which are highly conserved in size and number, SR proteins from Arabidopsis, carrot, and tobacco exhibit a complex pattern of intra- and interspecific variants. These plant SR proteins are able to complement inactive HeLa cell cytoplasmic S1OO extracts that are deficient in SR proteins, yielding functional splicing extracts. In addition, plant SR proteins were active in a heterologous alternative splicing assay. Thus, these plant SR proteins are authentic plant splicing factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of m7GpppN (where N is any nucleotide), termed cap, is present at the 5' end of all eukaryotic cellular mRNAs (except organellar). The eukaryotic initiation factor 4E (eIF-4E) binds to the cap and facilitates the formation of translation initiation complexes. eIF-4E is implicated in control of cell growth, as its overexpression causes malignant transformation of rodent cells and deregulates HeLa cell growth. It was suggested that overexpression of eIF-4E results in the enhanced translation of poorly translated mRNAs that encode growth-promoting proteins. Indeed, enhanced expression of several proteins, including cyclin D1 and ornithine decarboxylase (ODC), was documented in eIF-4E-overexpressing NTH 3T3 cells. However, the mechanism underlying this increase has not been elucidated. Here, we studied the mode by which eIF-4E increases the expression of cyclin D1 and ODC. We show that the increase in the amount of cyclin D1 and ODC is directly proportional to the degree of eIF-4E overexpression. Two mechanisms, which are not mutually exclusive, are responsible for the increase. In eIF-4E-overexpressing cells the rate of translation initiation of ODC mRNA was increased inasmuch as the mRNA sedimented with heavier polysomes. For cyclin D1 mRNA, translation initiation was not increased, but rather its amount in the cytoplasm increased, without a significant increase in total mRNA. Whereas, in the parental NIH 3T3 cell line, a large proportion of the cyclin D1 mRNA was confined to the nucleus, in eIF-4E-overexpressing cells the vast majority of the mRNA was present in the cytoplasm. These results indicate that eIF-4E affects directly or indirectly mRNA nucleocytoplasmic transport, in addition to its role in translation initiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalytic RNA molecules, or ribozymes, have generated significant interest as potential therapeutic agents for controlling gene expression. Although ribozymes have been shown to work in vitro and in cellular assays, there are no reports that demonstrate the efficacy of synthetic, stabilized ribozymes delivered in vivo. We are currently utilizing the rabbit model of interleukin 1-induced arthritis to assess the localization, stability, and efficacy of exogenous antistromelysin hammerhead ribozymes. The matrix metalloproteinase stromelysin is believed to be a key mediator in arthritic diseases. It seems likely therefore that inhibiting stromelysin would be a valid therapeutic approach for arthritis. We found that following intraarticular administration ribozymes were taken up by cells in the synovial lining, were stable in the synovium, and reduced synovial interleukin 1 alpha-induced stromelysin mRNA. This effect was demonstrated with ribozymes containing various chemical modifications that impart nuclease resistance and that recognize several distinct sites on the message. Catalytically inactive ribozymes were ineffective, thus suggesting a cleavage-mediated mechanism of action. These results suggest that ribozymes may be useful in the treatment of arthritic diseases characterized by dysregulation of metalloproteinase expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When in Escherichia coli the host RNA polymerase is replaced by the 8-fold faster bacteriophage T7 enzyme for transcription of the lacZ gene, the beta-galactosidase yield per transcript drops as a result of transcript destabilization. We have measured the beta-galactosidase yield per transcript from T7 RNA polymerase mutants that exhibit a reduced elongation speed in vitro. Aside from very slow mutants that were not sufficiently processive to transcribe the lacZ gene, the lower the polymerase speed, the higher the beta-galactosidase yield per transcript. In particular, a mutant which was 2.7-fold slower than the wild-type enzyme yielded 3.4- to 4.6-fold more beta-galactosidase per transcript. These differences in yield vanished in the presence of the rne-50 mutation and therefore reflect the unequal sensitivity of the transcripts to RNase E. We propose that the instability of the T7 RNA polymerase transcripts stems from the unmasking of an RNase E-sensitive site(s) between the polymerase and the leading ribosome: the faster the polymerase, the longer the lag between the synthesis of this site(s) and its shielding by ribosomes, and the lower the transcript stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Translational control is a major form of regulating gene expression during gametogenesis and early development in many organisms. We sought to determine whether the translational repression of the protamine 1 (Prm1) mRNA is necessary for normal spermatid differentiation in mice. To accomplish this we generated transgenic animals that carry a Prm1 transgene lacking its normal 3' untranslated region. Premature translation of Prm1 mRNA caused precocious condensation of spermatid nuclear DNA, abnormal head morphogenesis, and incomplete processing of Prm2 protein. Premature accumulation of Prm1 within syncytial spermatids in mice hemizygous for the transgene caused dominant male sterility, which in some cases was accompanied by a complete arrest in spermatid differentiation. These results demonstrate that correct temporal synthesis of Prm1 is necessary for the transition from nucleohistones to nucleoprotamines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infectious human respiratory syncytial virus (RSV) was produced by the intracellular coexpression of five plasmid-borne cDNAs. One cDNA encoded a complete positive-sense version of the RSV genome (corresponding to the replicative intermediate RNA or antigenome), and each of the other four encoded a separate RSV protein, namely, the major nucleocapsid N protein, the nucleocapsid P phosphoprotein, the major polymerase L protein, or the protein from the 5' proximal open reading frame of the M2 mRNA [M2(ORF1)]. RSV was not produced if any of the five plasmids was omitted. The requirement for the M2(ORF1) protein is consistent with its recent identification as a transcription elongation factor and confirms its importance for RSV gene expression. It should thus be possible to introduce defined changes into infectious RSV. This should be useful for basic studies of RSV molecular biology and pathogenesis; in addition, there are immediate applications to the development of live attenuated vaccine strains bearing predetermined defined attenuating mutations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of [arginine] vasopressin (AVP) mRNA and AVP immunoreactivity in pituicytes of the neural lobe (NL) of intact and pituitary stalk-transected rats, with and without osmotic stimulation, was examined. AVP mRNA was analyzed by Northern blotting, as well as by in situ hybridization in combination with immunocytochemistry using anti-glial fibrillary acidic protein (GFAP) as a marker for pituicytes. In intact rats, a poly(A) tail-truncated 0.62-kb AVP mRNA was detected in the NL and was found to increase 10-fold with 7 days of continuous salt loading. Morphological analysis of the NL of 7-day salt-loaded rats revealed the presence of AVP mRNA in a significant number of GFAP-positive pituicytes in the NL and in areas most probably containing nerve fibers. Eight days after pituitary stalk transection the NL AVP mRNA diminished in animals given water to drink, whereas in those given 2% saline for 18 h followed by 6 h of water, a treatment repeated on 6 successive days beginning 2 days after surgery, the 0.62-kb AVP mRNA was present. The AVP mRNA in the pituitary stalk-transected, salt-loaded rats showed an exclusive cellular distribution in the NL, indicative of localization in pituicytes. Immunoelectron microscopy showed the presence of AVP immunoreactivity in a subpopulation of pituicytes 7 and 10 days after pituitary stalk transection in salt-loaded animals, when almost all AVP fibers had disappeared from the NL. These data show that a subset of pituicytes in the NL is activated to synthesize AVP mRNA and AVP in response to osmotic stimulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Localization of mRNAs, a crucial step in the early development of some animals, has been shown to be directed by cis-acting elements that presumably interact with localization factors. Here we identify a protein, exl, that binds to BLE1, an RNA localization element from the Drosophila bicoid mRNA. Using mutations in BLE1, we demonstrate a correlation between in vitro exl binding and one phase of in vivo localization directed by BLE1, implicating exl in that localization event. Furthermore, the same phase of localization is disrupted in exuperantia mutants, suggesting that exl and exuperantia proteins interact. Identification of a protein that binds specifically to an mRNA localization element and acts in mRNA localization opens the way for a biochemical analysis of this process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Loss of function of any one of three UPF genes prevents the accelerated decay of nonsense mRNAs in Saccharomyces cerevisiae. We report the identification and DNA sequence of UPF3, which is present in one nonessential copy on chromosome VII. Upf3 contains three putative nuclear localization signal sequences, suggesting that it may be located in a different compartment than the cytoplasmic Upf1 protein. Epitope-tagged Upf3 (FLAG-Upf3) does not cofractionate with polyribosomes or 80S ribosomal particles. Double disruptions of UPF1 and UPF3 affect nonsense mRNA decay in a manner indistinguishable from single disruptions. These results suggest that the Upf proteins perform related functions in a common pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature-sensitive alleles in four genes (slu7-1, prp16-2, prp17-1, and prp18-1) are known to confer a specific block to the second chemical step of pre-mRNA splicing in vivo in the yeast Saccharomyces cerevisiae. Previous studies showed that Prp16p and Prp18p are required solely for the second step in vitro. The RNA-dependent ATPase, Prp16p, functions at a stage in splicing when ATP is required, whereas Prp18p functions at an ATP-independent stage. Here we use immunodepletion to show that the roles of Slu7p and Prp17p are also confined to the second step of splicing. We find that extracts depleted of Prp17p require both Prp17p and ATP for slicing complementation, whereas extracts depleted of Slu7p require only the addition of Slu7p. These different ATP requirements suggest that Prp16p and Prp17p function before Prp18p and Slu7p. Although SLU7 encodes an essential gene product, we find that a null allele of prp17 is temperature-sensitive for growth and has a partial splicing defect in vitro. Finally, high-copy suppression experiments indicate functional interactions between PRP16 and PRP17, PRP16 and SLU7, and SLU7 and PRP18. Taken together, the results suggest that these four factors may function within a multi-component complex that has both an ATP-dependent and an ATP-independent role in the second step of pre-mRNA splicing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linkage disequilibrium between polymorphisms in a natural population may result from various evolutionary forces, including random genetic drift due to sampling of gametes during reproduction, restricted migration between subpopulations in a subdivided population, or epistatic selection. In this report, we present evidence that the majority of significant linkage disequilibria observed in introns of the alcohol dehydrogenase locus (Adh) of Drosophila pseudoobscura are due to epistatic selection maintaining secondary structure of precursor mRNA (pre-mRNA). Based on phylogenetic-comparative analysis and a likelihood approach, we propose secondary structure models of Adh pre-mRNA for the regions of the adult intron and intron 2 where clustering of linkage disequilibria has been observed. Furthermore, we applied the likelihood ratio test to the phylogenetically predicted secondary structure in intron 1. In contrast to the other two structures, polymorphisms associated with the more conserved stem-loop structure of intron 1 are in low frequency, and linkage disequilibria have not been observed. These findings are qualitatively consistent with a model of compensatory fitness interactions. This model assumes that mutations disrupting pairing in a secondary structural element are individually deleterious if they destabilize a functionally important structure; a second "compensatory" mutation, however, may restabilize the structure and restore fitness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overexpression of phytochrome B (phyB) in transgenic Arabidopsis results in enhanced deetiolation in red light. To define domains of phyB functionally important for its regulatory activity, we performed chemical mutagenesis of a phyB-overexpressing line and screened for phenotypic revertants in red light. Four phyB-transgene-linked revertants that retain parental levels of full-length, dimeric, and spectrally normal overexpressed phyB were identified among 101 red-light-specific revertants. All carry single amino acid substitutions in the transgene-encoded phyB that reduce activity by 40- to 1000-fold compared to the nonmutagenized parent. The data indicate that the mutant molecules are fully active in photosignal perception but defective in the regulatory activity responsible for signal transfer to downstream components. All four mutations fall within a 62-residue region in the COOH-terminal domain of phyB, with two independent mutations occurring in a single amino acid, Gly-767. Accumulating evidence indicates that the identified region is a critical determinant in the regulatory function of both phyB and phyA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rat skeletal muscle selenoprotein W cDNA was isolated and sequenced. The isolation strategy involved design of degenerate PCR primers from reverse translation of a partial peptide sequence. A reverse transcription-coupled PCR product from rat muscle mRNA was used to screen a muscle cDNA library prepared from selenium-supplemented rats. The cDNA sequence confirmed the known protein primary sequence, including a selenocysteine residue encoded by TGA, and identified residues needed to complete the protein sequence. RNA folding algorithms predict a stem-loop structure in the 3' untranslated region of the selenoprotein W mRNA that resembles selenocysteine insertion sequence (SE-CIS) elements identified in other selenocysteine coding cDNAs. Dietary regulation of selenoprotein W mRNA was examined in rat muscle. Dietary selenium at 0.1 ppm as selenite increased muscle mRNA 4-fold relative to a selenium-deficient diet. Higher dietary selenium produced no further increase in mRNA levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms by which stress and anti-depressants exert opposite effects on the course of clinical depression are not known. However, potential candidates might include neurotrophic factors that regulate the development, plasticity, and survival of neurons. To explore this hypothesis, we examined the effects of stress and antidepressants on neurotrophin expression in the locus coeruleus (LC), which modulates many of the behavioral and physiological responses to stress and has been implicated in mood disorders. Using in situ hybridization, we demonstrate that neurotrophin 3 (NT-3) is expressed in noradrenergic neurons of the LC. Recurrent, but not acute, immobilization stress increased NT-3 mRNA levels in the LC. In contrast, chronic treatment with antidepressants decreased NT-3 mRNA levels. The effect occurred in response to antidepressants that blocked norepinephrine uptake, whereas serotonin-specific reuptake inhibitors did not alter NT-3 levels. Electroconvulsive seizures also decreased NT-3 expression in the LC as well as the hippocampus. Ntrk3 (neurotrophic tyrosine kinase receptor type 3; formerly TrkC), the receptor for NT-3, is expressed in the LC, but its mRNA levels did not change with stress or antidepressant treatments. Because, NT-3 is known to be trophic for LC neurons, our results raise the possibility that some of the effects of stress and antidepressants on LC function and plasticity could be mediated through NT-3. Moreover, the coexpression of NT-3 and its receptor in the LC suggests the potential for autocrine mechanisms of action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that the cauliflower mosaic virus (CaMV) gene VI product can transactivate the expression of a reporter gene in bakers' yeast, Saccharomyces cerevisiae. The gene VI coding sequence was placed under the control of the galactose-inducible promoter GAL1, which is presented in the yeast shuttle vector pYES2, to create plasmid JS169. We also created a chloramphenicol acetyltransferase (CAT) reporter plasmid, JS161, by inserting the CAT reporter gene in-frame into CaMV gene II and subsequently cloning the entire CaMV genome into the yeast vector pRS314. When JS161 was transformed into yeast and subsequently assayed for CAT activity, only a very low level of CAT activity was detected in cellular extracts. To investigate whether the CaMV gene VI product would mediate an increase in CAT activity, we cotransformed yeast with JS169 and JS161. Upon induction with galactose, we found that CAT activity in yeast transformed with JS161 and JS169 was about 19 times higher than the level in the transformants that contained only JS161. CAT activity was dependent on the presence of the gene VI protein, because essentially no CAT activity was detected in yeast cells grown in the presence of glucose, which represses expression from the GAL1 promoter. RNase protection assays showed that the gene VI product had no effect on transcription from the 35S RNA promoter, demonstrating that regulation was occurring at the translation level. This yeast system will prove useful for understanding how the gene VI product of CaMV mediates the translation of genes present on a eukaryotic polycistronic mRNA.