153 resultados para domain-specific languages


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two dodecapeptides belonging to distinct classes of Src homology 3 (SH3) ligands and selected from biased phage display libraries were used to investigate interactions between a specificity pocket in the Src SH3 domain and ligant residues flanking the proline-rich core. The solution structures of c-Src SH3 complexed with these peptides were solved by NMR. In addition to proline-rich, polyproline type II helix-forming core, the class I and II ligands each possesses a flanking sequence that occupies a large pocket between the RT and n-Src loops of the SH3 domain. Structural and mutational analyses illustrate how the two classes of SH3 ligands exploit a specificity pocket on the receptor differently to increase binding affinity and specificity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the yeast two-hybrid system we have identified a human protein, GAIP (G Alpha Interacting Protein), that specifically interacts with the heterotrimeric GTP-binding protein G alpha i3. Interaction was verified by specific binding of in vitro-translated G alpha i3 with a GAIP-glutathione S-transferase fusion protein. GAIP is a small protein (217 amino acids, 24 kDa) that contains two potential phosphorylation sites for protein kinase C and seven for casein kinase 2. GAIP shows high homology to two previously identified human proteins, GOS8 and 1R20, two Caenorhabditis elegans proteins, CO5B5.7 and C29H12.3, and the FLBA gene product in Aspergillus nidulans--all of unknown function. Significant homology was also found to the SST2 gene product in Saccharomyces cerevisiae that is known to interact with a yeast G alpha subunit (Gpa1). A highly conserved core domain of 125 amino acids characterizes this family of proteins. Analysis of deletion mutants demonstrated that the core domain is the site of GAIP's interaction with G alpha i3. GAIP is likely to be an early inducible phosphoprotein, as its cDNA contains the TTTTGT sequence characteristic of early response genes in its 3'-untranslated region. By Northern analysis GAIP's 1.6-kb mRNA is most abundant in lung, heart, placenta, and liver and is very low in brain, skeletal muscle, pancreas, and kidney. GAIP appears to interact exclusively with G alpha i3, as it did not interact with G alpha i2 and G alpha q. The fact that GAIP and Sst2 interact with G alpha subunits and share a common domain suggests that other members of the GAIP family also interact with G alpha subunits through the 125-amino-acid core domain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most proteins that activate RNA polymerase II-mediated transcription in eukaryotic cells contain sequence-specific DNA-binding domains and "activation" regions. The latter bind general transcription factors and/or coactivators and are required for high-level transcription. Their function in vivo is unknown. Since several activation domains bind the TATA-binding protein (TBP), TBP-associated factors, or other general factors in vitro, one role of the activation domain may be to facilitate promoter occupancy by supporting cooperative binding of the activator and general transcription factors. Using the GAL4 system of yeast, we have tested this model in vivo. It is demonstrated that the presence of a TATA box (the TBP binding site) facilitates binding of GAL4 protein to low- and moderate-affinity sites and that the activation domain modulates these effects. These results support the cooperative binding model for activation domain function in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All cloned members of the mammalian Na+/H+ exchanger gene family encode proteins that consist of two functionally distinct domains: a membrane-bound N terminus and a cytoplasmic C terminus, which are required for ion transport and regulation of transport, respectively. Despite their similarity in structure, three members of this family, designated NHE1, NHE2, and NHE3, exhibit different kinetic mechanisms in response to growth factors and protein kinases. For instance, growth factors stimulate NHE1 by a change in the affinity constant for intracellular H+, K'(Hi+), and regulate NHE2 and NHE3 by a change in Vmax. We have constructed chimeric Na+/H+ exchangers by exchanging the N and C termini among three cloned rabbit Na+/H+ exchangers (NHE1 to NHE3) to determine which domain is responsible for the above Vmax-vs.-K'(H(i)+) effect of the Na+/H+ isoforms. All of the chimeras had functional exchange activity and basal kinetic properties similar to those of wild-type exchangers. Studies with serum showed that the N terminus is responsible for the Vmax-vs.-K'(H(i)+) stimulation of the Na+/H+ exchanger isoforms. Moreover, phorbol 12-myristate 13-acetate and fibroblast growth factor altered Na+/H+ exchange only in chimeras that had an epithelial N-terminal domain matched with an epithelial C-terminal domain. Therefore, the protein kinase-induced regulation of Na+/H+ exchangers is mediated through a specific interaction between the N- and C-termini, whcih is restricted so that epithelial N- and epithelial N-and C-terminal portions of the exchangers are required for regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

p53 accumulates after DNA damage and arrests cellular growth. These findings suggest a possible role for p53 in the cellular response to DNA damage. We have previously shown that the C terminus of p53 binds DNA nonspecifically and assembles stable tetramers. In this study, we have utilized purified segments of human and murine p53s to determine which p53 domains may participate in a DNA damage response pathway. We find that the C-terminal 75 amino acids of human or murine p53 are necessary and sufficient for the DNA annealing and strand-transfer activities of p53. In addition, both full-length wild-type p53 and the C-terminal 75 amino acids display an increased binding affinity for DNA damaged by restriction digestion, DNase I treatment, or ionizing radiation. In contrast, the central site-specific DNA-binding domain together with the tetramerization domain does not have these activities. We propose that interactions of the C terminus of p53 with damaged DNA may play a role in the activation of p53 in response to DNA damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein-protein interactions involving specific transactivation domains play a central role in gene transcription and its regulation. The promoter-specific transcription factor Sp1 contains two glutamine-rich transcriptional activation domains (A and B) that mediate direct interactions with the transcription factor TFIID complex associated with RNA polymerase II and synergistic effects involving multiple Sp1 molecules. In the present study, we report the complementary DNA sequence for an alternatively spliced form of mouse Sp1 (mSp1-S) that lacks one of the two glutamine-rich activation regions present in the full-length protein. Corresponding transcripts were identified in mouse tissues and cell lines, and an Sp1-related protein identical in size to that predicted for mSp1-S was detected in mouse nuclear extracts. Cotransfection analysis revealed that mSp1-S lacks appreciable activity at promoters containing a single Sp1 response element but is active when multiple Sp1 sites are present, suggesting synergistic interactions between multiple mSp1-S molecules. The absence of a single glutamine-rich domain does not fully explain the properties of the smaller protein and indicates that additional structural features account for its unique transcriptional activity. The functional implications of this alternatively spliced form of Sp1 are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein kinase C (PKC) is involved in the proliferation and differentiation of many cell types. In human erythroleukemia (K-562) cells, the PKC isoforms alpha and beta II play distinct functional roles. alpha PKC is involved in phorbol 12-myristate 13-acetate-induced cytostasis and megakaryocytic differentiation, whereas beta II PKC is required for proliferation. To identify regions within alpha and beta II PKC that allow participation in these divergent pathways, we constructed chimeras in which the regulatory and catalytic domains of alpha and beta II PKC were exchanged. These PKC chimeras can be stably expressed, exhibit enzymatic properties similar to native alpha and beta II PKC in vitro, and participate in alpha and beta II PKC isotype-specific pathways in K-562 cells. Expression of the beta/alpha PKC chimera induces cytostasis in the same manner as overexpression of wild-type alpha PKC. In contrast, the alpha/beta II PKC chimera, like wild-type beta II PKC, selectively translocates to the nucleus and leads to increased phosphorylation of the nuclear envelope polypeptide lamin B in response to bryostatin-1. Therefore, the catalytic domains of alpha and beta II PKC contain determinants important for alpha and beta II PKC isotype function. These results suggest that the catalytic domain represents a potential target for modulating PKC isotype activity in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Overexpression of phytochrome B (phyB) in transgenic Arabidopsis results in enhanced deetiolation in red light. To define domains of phyB functionally important for its regulatory activity, we performed chemical mutagenesis of a phyB-overexpressing line and screened for phenotypic revertants in red light. Four phyB-transgene-linked revertants that retain parental levels of full-length, dimeric, and spectrally normal overexpressed phyB were identified among 101 red-light-specific revertants. All carry single amino acid substitutions in the transgene-encoded phyB that reduce activity by 40- to 1000-fold compared to the nonmutagenized parent. The data indicate that the mutant molecules are fully active in photosignal perception but defective in the regulatory activity responsible for signal transfer to downstream components. All four mutations fall within a 62-residue region in the COOH-terminal domain of phyB, with two independent mutations occurring in a single amino acid, Gly-767. Accumulating evidence indicates that the identified region is a critical determinant in the regulatory function of both phyB and phyA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sequence of epithelial cell proliferation, allocation to four principal lineages, migration-associated differentiation, and cell loss occurs along the crypt-villus axis of the mouse intestine. The sequence is completed in a few days and is recapitulated throughout the life-span of the animal. We have used an intestine-specific fatty acid binding protein gene, Fabpi, as a model for studying regulation of gene expression in this unique developmental system. Promoter mapping studies in transgenic mice identified a 20-bp cis-acting element (5'-AGGTGGAAGCCATCACACTT-3') that binds small intestinal nuclear proteins and participates in the control of Fabpi's cephalocaudal, differentiation-dependent, and cell lineage-specific patterns of expression. Immunocytochemical studies using confocal and electron microscopy indicate that it does so by acting as a suppressor of gene expression in the distal small intestine/colon, as a suppressor of gene activation in proliferating and nonproliferating cells located in the crypts of Lieberkühn, and as a suppressor of expression in the growth factor and defensin-producing Paneth cell lineage. The 20-bp domain has no obvious sequence similarities to known transcription factor binding sites. The three functions modulated by this compact element represent the types of functions required to establish and maintain the intestine's remarkably complex spatial patterns of gene expression. The transgenes described in this report also appear to be useful in characterizing the crypt's stem cell hierarchy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T-cell activation requires cooperative signals generated by the T-cell antigen receptor zeta-chain complex (TCR zeta-CD3) and the costimulatory antigen CD28. CD28 interacts with three intracellular proteins-phosphatidylinositol 3-kinase (PI 3-kinase), T cell-specific protein-tyrosine kinase ITK (formerly TSK or EMT), and the complex between growth factor receptor-bound protein 2 and son of sevenless guanine nucleotide exchange protein (GRB-2-SOS). PI 3-kinase and GRB-2 bind to the CD28 phosphotyrosine-based Tyr-Met-Asn-Met motif by means of intrinsic Src-homology 2 (SH2) domains. The requirement for tyrosine phosphorylation of the Tyr-Met-Asn-Met motif for SH2 domain binding implicates an intervening protein-tyrosine kinase in the recruitment of PI 3-kinase and GRB-2 by CD28. Candidate kinases include p56Lck, p59Fyn, zeta-chain-associated 70-kDa protein (ZAP-70), and ITK. In this study, we demonstrate in coexpression studies that p56Lck and p59Fyn phosphorylate CD28 primarily at Tyr-191 of the Tyr-Met-Asn-Met motif, inducing a 3- to 8-fold increase in p85 (subunit of PI 3-kinase) and GRB-2 SH2 binding to CD28. Phosphatase digestion of CD28 eliminated binding. In contrast to Src kinases, ZAP-70 and ITK failed to induce these events. Further, ITK binding to CD28 was dependent on the presence of p56Lck and is thus likely to act downstream of p56Lck/p59Fyn in a signaling cascade. p56Lck is therefore likely to be a central switch in T-cell activation, with the dual function of regulating CD28-mediated costimulation as well as TCR-CD3-CD4 signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The WW domain has previously been described as a motif of 38 semiconserved residues found in seemingly unrelated proteins, such as dystrophin, Yes-associated protein (YAP), and two transcriptional regulators, Rsp-5 and FE65. The molecular function of the WW domain has been unknown until this time. Using a functional screen of a cDNA expression library, we have identified two putative ligands of the WW domain of YAP, which we named WBP-1 and WBP-2. Peptide sequence comparison between the two partial clones revealed a homologous region consisting of a proline-rich domain followed by a tyrosine residue (with the shared sequence PPPPY), which we shall call the PY motif. Binding assays and site-specific mutagenesis have shown that the PY motif binds with relatively high affinity and specificity to the WW domain of YAP, with the preliminary consensus XPPXY being critical for binding. Herein, we have implicated the WW domain with a role in mediating protein-protein interactions, as a variant of the paradigm set by Src homology 3 domains and their proline-rich ligands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a strategy to generate mutant genes in mammalian cells in a conditional manner by employing a fusion protein, Cre-ER, consisting of the loxP site-specific Cre recombinase linked to the ligand-binding domain of the human estrogen receptor. We have established homozygous retinoid X receptor alpha-negative (RXR alpha-/-) F9 embryonal carcinoma cells constitutively expressing Cre-ER and have shown that estradiol or the estrogen agonist/antagonist 4-hydroxytamoxifen efficiently induced the recombinase activity, whereas no activity was detected in the absence of ligand or in the presence of the antiestrogen ICI 164,384. Furthermore, using a targeting vector containing a selection marker flanked by loxP sites, we have inactivated one retinoic acid receptor alpha allele in such a line, demonstrating that the presence of the recombinase does not inhibit homologous recombination. Combining this conditional site-specific recombination system with tissue-specific expression of Cre-ER may allow modification of the mammalian genome in vivo in a spatiotemporally regulated manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a reverse-transcriptase PCR-based protocol suitable for efficient expression analysis of multigene families is presented. The method combines restriction fragment length polymorphism (RFLP) technology with a gene family-specific version of mRNA differential display and hence is called "RFLP-coupled domain-directed differential display. "With this method, expression of all members of a multigene family at many different developmental stages, in diverse tissues and even in different organisms, can be displayed on one gel. Moreover, bands of interest, representing gene family members, are directly accessible to sequence analysis, without the need for subcloning. The method thus enables a detailed, high-resolution expression analysis of known gene family members as well as the identification and characterization of new ones. Here the technique was used to analyze differential expression of MADS-box genes in male and female inflorescences of maize (Zea mays ssp. mays). Six different MADS-box genes could be identified, being either specifically expressed in the female sex or preferentially expressed in male or female inflorescences, respectively. Other possible applications of the method are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The p70 S6 kinase is activated by insulin and mitogens through multisite phosphorylation of the enzyme. One set of activating phosphorylations occurs in a putative autoinhibitory domain in the noncatalytic carboxyl-terminal tail. Deletion of this tail yields a variant (p70 delta CT104) that nevertheless continues to be mitogen regulated. Coexpression with a recombinant constitutively active phosphatidylinositol (PI) 3-kinase (EC 2.7.1.137) gives substantial activation of both full-length p70 and p70 delta CT104 but not Rsk. Activation of p70 delta CT104 by PI 3-kinase and inhibition by wortmannin are each accompanied by parallel and selective changes in the phosphorylation of p70 Thr-252. A Thr or Ser at this site, in subdomain VIII of the catalytic domain just amino-terminal to the APE motif, is necessary for p70 40S kinase activity. The inactive ATP-binding site mutant K123M p70 delta CT104 undergoes phosphorylation of Thr-252 in situ but does not undergo direct phosphorylation by the active PI 3-kinase in vitro. PI 3-kinase provides a signal necessary for the mitogen activation of the p70 S6 kinase, which directs the site-specific phosphorylation of Thr-252 in the p70 catalytic domain, through a distinctive signal transduction pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recombinant antibodies capable of sequence-specific interactions with nucleic acids represent a class of DNA- and RNA-binding proteins with potential for broad application in basic research and medicine. We describe the rational design of a DNA-binding antibody, Fab-Ebox, by replacing a variable segment of the immunoglobulin heavy chain with a 17-amino acid domain derived from TFEB, a class B basic helix-loop-helix protein. DNA-binding activity was studied by electrophoretic mobility-shift assays in which Fab-Ebox was shown to form a specific complex with DNA containing the TFEB recognition motif (CACGTG). Similarities were found in the abilities of TFEB and Fab-Ebox to discriminate between oligodeoxyribonucleotides containing altered recognition sequences. Comparable interference of binding by methylation of cytosine residues indicated that Fab-Ebox and TFEB both contact DNA through interactions along the major groove of double-stranded DNA. The results of this study indicate that DNA-binding antibodies of high specificity can be developed by using the modular nature of both immunoglobulins and transcription factors.