141 resultados para UBIQUITIN LIGASE
Resumo:
The inhibitor protein I kappa B alpha controls the nuclear import of the transcription factor NF-kappa B. The inhibitory activity of I kappa B alpha is regulated from the cytoplasmic compartment by signal-induced proteolysis. Previous studies have shown that signal-dependent phosphorylation of serine residues 32 and 36 targets I kappa B alpha to the ubiquitin-proteasome pathway. Here we provide evidence that lysine residues 21 and 22 serve as the primary sites for signal-induced ubiquitination of I kappa B alpha. Conservative Lys-->Arg substitutions at both Lys-21 and Lys-22 produce dominant-negative mutants of I kappa B alpha in vivo. These constitutive inhibitors are appropriately phosphorylated but fail to release NF-kappa B in response to multiple inducers, including viral proteins, cytokines, and agents that mimic antigenic stimulation through the T-cell receptor. Moreover, these Lys-->Arg mutations prevent signal-dependent degradation of I kappa B alpha in vivo and ubiquitin conjugation in vitro. We conclude that site-specific ubiquitination of phosphorylated I kappa B alpha at Lys-21 and/or Lys-22 is an obligatory step in the activation of NF-kappa B.
Resumo:
Programmed cell death (apoptosis) is a normal physiological process, which could in principle be manipulated to play an important role in cancer therapy. The key importance of p53 expression in the apoptotic response to DNA-damaging agents has been stressed because mutant or deleted p53 is so common in most kinds of cancer. An important strategy, therefore, is to find ways to induce apoptosis in the absence of wild-type p53. In this paper, we compare apoptosis in normal human mammary epithelial cells, in cells immortalized with human papilloma virus (HPV), and in mammary carcinoma cell lines expressing wild-type p53, mutant p53, or no p53 protein. Apoptosis was induced with mitomycin C (MMC), a DNA cross-linking and damaging agent, or with staurosporine (SSP), a protein kinase inhibitor. The normal and HPV-transfected cells responded more strongly to SSP than did the tumor cells. After exposure to MMC, cells expressing wild-type p53 underwent extensive apoptosis, whereas cells carrying mutated p53 responded weakly. Primary breast cancer cell lines null for p53 protein were resistant to MMC. In contrast, two HPV immortalized cell lines in which p53 protein was destroyed by E6-modulated ubiquitinylation were highly sensitive to apoptosis induced by MMC. Neither p53 mRNA nor protein was induced in the HPV immortalized cells after MMC treatment, although p53 protein was elevated by MMC in cells with wild-type p53. Importantly, MMC induced p21 mRNA but not p21 protein expression in the HPV immortalized cells. Thus, HPV 16E6 can sensitize mammary epithelial cells to MMC-induced apoptosis via a p53- and p21-independent pathway. We propose that the HPV 16E6 protein modulates ubiquitin-mediated degradation not only of p53 but also of p21 and perhaps other proteins involved in apoptosis.
Resumo:
We describe a complete gene family encoding phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) in one particular plant species. In parsley (Petroselinum crispum), the PAL gene family comprises two closely related members, PAL1 and PAL2, whose TATA-proximal promoter and coding regions are almost identical, and two additional members, PAL3 and PAL4, with less similarity to one another and to the PAL1 and PAL2 genes. Using gene-specific probes derived from the 5' untranslated regions of PAL1/2, PAL3, and PAL4, we determined the respective mRNA levels in parsley leaves and cell cultures treated with UV light or fungal elicitor and in wounded leaves and roots. For comparison, the functionally closely related cinnamate 4-hydroxylase (C4H) and 4-coumarate:CoA ligase (4CL) mRNAs were measured in parallel. The results indicate various degrees of differential responsiveness of PAL4 relative to the other PAL gene family members, in contrast to a high degree of coordination in the overall expression of the PAL, C4H, and 4CL genes. The only significant sequence similarities shared by all four PAL gene promoters are a TATA-proximal set of three putative cis-acting elements (boxes P, A, and L). None of these elements alone, or the promoter region containing all of them together, conferred elicitor or light responsiveness on a reporter gene in transient expression assays. The elements appear to be necessary but not sufficient for elicitor- or light-mediated PAL gene activation, similar to the situation previously reported for 4CL.
Resumo:
A technique is described for the simultaneous and controlled random mutation of all three heavy or light chain complementarity-determining regions (CDRs) in a single-chain Fv specific for the O polysaccharide of Salmonella serogroup B. Sense oligonucleotides were synthesized such that the central bases encoding a CDR were randomized by equimolar spiking with A, G, C, and T at a level of 10% while the antisense strands contained inosine in the spiked regions. Phage display of libraries assembled from the spiked oligonucleotides by a synthetic ligase chain reaction demonstrated a bias for selection of mutants that formed dimers and higher oligomers. Kinetic analyses showed that oligomerization increased association rates in addition to slowing dissociation rates. In combination with some contribution from reduced steric clashes with residues in heavy-chain CDR2, oligomerization resulted in functional affinities that were much higher than that of the monomeric form of the wild-type single-chain Fv.
Resumo:
Holocarboxylase synthetase (HCS) catalyzes the biotinylation of the four biotin-dependent carboxylases in human cells. Patients with HCS deficiency lack activity of all four carboxylases, indicating that a single HCS is targeted to the mitochondria and cytoplasm. We isolated 21 human HCS cDNA clones, in four size classes of 2.0-4.0 kb, by complementation of an Escherichia coli birA mutant defective in biotin ligase. Expression of the cDNA clones promoted biotinylation of the bacterial biotinyl carboxyl carrier protein as well as a carboxyl-terminal fragment of the alpha subunit of human propionyl-CoA carboxylase expressed from a plasmid. The open reading frame encodes a predicted protein of 726 aa and M(r) 80,759. Northern blot analysis revealed the presence of a 5.8-kb major species and 4.0-, 4.5-, and 8.5-kb minor species of poly(A)+ RNA in human tissues. Human HCS shows specific regions of homology with the BirA protein of E. coli and the presumptive biotin ligase of Paracoccus denitrificans. Several forms of HCS mRNA are generated by alternative splicing, and as a result, two mRNA molecules bear different putative translation initiation sites. A sequence upstream of the first translation initiation site encodes a peptide structurally similar to mitochondrial presequences, but it lacks an in-frame ATG codon to direct its translation. We anticipate that alternative splicing most likely mediates the mitochondrial versus cytoplasmic expression, although the elements required for directing the enzyme to the mitochondria remain to be confirmed.
Resumo:
The monoclonal nonspecific suppressor factor (MNSF) is a lymphokine product of a murine T-cell hybridoma that inhibits the generation of lipopolysaccharide-induced immunoglobulin-secreting cells in an antigen-nonspecific manner. A cDNA clone encoding MNSF beta (an isoform of MNSF) was isolated and expressed in bacteria. The sequence obtained is virtually identical to the Fau protein, a product of the ubiquitously expressed fau gene with unknown function. Northern blot analysis demonstrated a single, 0.6-kb transcript. Specific polyclonal antibodies against synthetic peptides corresponding to the deduced amino acid sequences were elicited in rabbits. Immunoprecipitation experiments with these antibodies showed that MNSF beta is released extracellularly in an aggregate form, albeit it lacks a signal peptide sequence. The anti-MNSF beta affinity eluate from the MNSF-producing murine hybridoma (E17) and concanavalin A-activated splenocyte culture supernatants inhibited the immunoglobulin production by lipopolysaccharide-activated splenocytes. Recombinant MNSF beta also showed a similar biologic activity. Thus, ubiquitin-like protein(s) may be involved in the regulation of the immune responses.