143 resultados para Tumor cells


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Beckwith-Wiedemann syndrome (BWS) involves fetal overgrowth and predisposition to a wide variety of embryonal tumors of childhood. We have previously found that BWS is genetically linked to 11p15 and that this same band shows loss of heterozygosity in the types of tumors to which children with BWS are susceptible. However, 11p15 contains > 20 megabases, and therefore, the BWS and tumor suppressor genes could be distinct. To determine the precise physical relationship between these loci, we isolated yeast artificial chromosomes, and cosmid libraries from them, within the region of loss of heterozygosity in embryonal tumors. Five germ-line balanced chromosomal rearrangement breakpoint sites from BWS patients, as well as a balanced chromosomal translocation breakpoint from a rhabdoid tumor, were isolated within a 295- to 320-kb cluster defined by a complete cosmid contig crossing these breakpoints. This breakpoint cluster terminated approximately 100 kb centromeric to the imprinted gene IGF2 and 100 kb telomeric to p57KIP2, an inhibitor of cyclin-dependent kinases, and was located within subchromosomal transferable fragments that suppressed the growth of embryonal tumor cells in genetic complementation experiments. We have identified 11 transcribed sequences in this BWS/tumor suppressor coincident region, one of which corresponded to p57KIP2. However, three additional BWS breakpoints were > 4 megabases centromeric to the other five breakpoints and were excluded from the tumor suppressor region defined by subchromosomal transferable fragments. Thus, multiple genetic loci define BWS and tumor suppression on 11p15.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The induction of CD8+ cytotoxic T lymphocytes (CTLs) is desirable for immunization against many diseases, and recombinant-synthetic peptide antigens are now favored agents to use. However, a major problem is how to induce CTLs, which requires a T1-type response to such synthetic antigens. We report that T1-type (generating high CTL, low antibody) or T2-type (the reciprocal) responses can be induced by conjugation of the antigen to the carbohydrate polymer mannan: T1 responses are selected by using oxidizing conditions; T2 responses are selected by using reducing conditions for the conjugation. Using human MUC1 as a model antigen in mice, immunization with oxidized mannan-MUC1 fusion protein (ox-M-FP) led to complete tumor protection (challenge up to 5 x 10(7) MUC1+ tumor cells), CTLs, and a high CTL precursor (CTLp) frequency (1/6900), whereas immunization with reduced mannan-MUC1 FP (red-M-FP) led to poor protection after challenge with only 10(6) MUC1+ tumor cells, no CTLs, and a low CTLp frequency (1/87,800). Ox-M-FP selects for a T1 response (mediated here by CD8+ cells) with high interferon gamma (IFN-gamma) secretion, no interleukin 4 (IL-4), and a predominant IgG2a antibody response; red-M-FP selects for a T2-type response with IL-4 production and a high predominant IgG1 antibody response but no IFN-gamma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The delivery of viral vectors to the brain for treatment of intracerebral tumors is most commonly accomplished by stereotaxic inoculation directly into the tumor. However, the small volume of distribution by inoculation may limit the efficacy of viral therapy of large or disseminated tumors. We have investigated mechanisms to increase vector delivery to intracerebral xenografts of human LX-1 small-cell lung carcinoma tumors in the nude rat. The distribution of Escherichia coli lacZ transgene expression from primary viral infection was assessed after delivery of recombinant virus by intratumor inoculation or intracarotid infusion with or without osmotic disruption of the blood-brain barrier (BBB). These studies used replication-compromised herpes simplex virus type 1 (HSV; vector RH105) and replication-defective adenovirus (AdRSVlacZ), which represent two of the most commonly proposed viral vectors for tumor therapy. Transvascular delivery of both viruses to intracerebral tumor was demonstrated when administered intraarterially (i.a.) after osmotic BBB disruption (n = 9 for adenovirus; n = 7 for HSV), while no virus infection was apparent after i.a. administration without BBB modification (n = 8 for adenovirus; n = 4 for HSV). The thymidine kinase-negative HSV vector infected clumps of tumor cells as a result of its ability to replicate selectively in dividing cells. Osmotic BBB disruption in combination with i.a. administration of viral vectors may offer a method of global delivery to treat disseminated brain tumors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quinone reductase [NAD(P)H:(quinone acceptor) oxidoreductase, EC 1.6.99.2], also called DT diaphorase, is a homodimeric FAD-containing enzyme that catalyzes obligatory NAD(P)H-dependent two-electron reductions of quinones and protects cells against the toxic and neoplastic effects of free radicals and reactive oxygen species arising from one-electron reductions. These two-electron reductions participate in the reductive bioactivation of cancer chemotherapeutic agents such as mitomycin C in tumor cells. Thus, surprisingly, the same enzymatic reaction that protects normal cells activates cytotoxic drugs used in cancer chemotherapy. The 2.1-A crystal structure of rat liver quinone reductase reveals that the folding of a portion of each monomer is similar to that of flavodoxin, a bacterial FMN-containing protein. Two additional portions of the polypeptide chains are involved in dimerization and in formation of the two identical catalytic sites to which both monomers contribute. The crystallographic structures of two FAD-containing enzyme complexes (one containing NADP+, the other containing duroquinone) suggest that direct hydride transfers from NAD(P)H to FAD and from FADH2 to the quinone [which occupies the site vacated by NAD(P)H] provide a simple rationale for the obligatory two-electron reductions involving a ping-pong mechanism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several studies have established a link between blood coagulation and cancer, and more specifically between tissue factor (TF), a transmembrane protein involved in initiating blood coagulation, and tumor metastasis. In the study reported here, a murine model of human melanoma metastasis was used for two experiments. (i) The first experiment was designed to test the effect of varying the level of TF expression in human melanoma cells on their metastatic potential. Two matched sets of cloned human melanoma lines, one expressing a high level and the other a low level of the normal human TF molecule, were generated by retroviral-mediated transfections of a nonmetastatic parental line. The metastatic potential of the two sets of transfected lines was compared by injecting the tumor cells into the tail vein of severe combined immunodeficiency (SCID) mice and later examining the lungs and other tissues for tumor development. Metastatic tumors were detected in 86% of the mice injected with the high-TF lines and in 5% of the mice injected with the low-TF lines, indicating that a high TF level promotes metastasis of human melanoma in the SCID mouse model. This TF effect on metastasis occurs with i.v.-injected melanoma cells but does not occur with primary tumors formed from s.c.-injected melanoma cells, suggesting that TF acts at a late stage of metastasis, after tumor cells have escaped from the primary site and entered the blood. (ii) The second experiment was designed to analyze the mechanism by which TF promotes melanoma metastasis. The procedure involved testing the effect on metastasis of mutations in either the extracellular or cytoplasmic domains of the transmembrane TF molecule. The extracellular mutations introduced two amino acid substitutions that inhibited initiation by TF of the blood-coagulation cascade; the cytoplasmic mutation deleted most of the cytoplasmic domain without impairing the coagulation function of TF. Several human melanoma lines expressing high levels of either of the two mutant TF molecules were generated by retroviral-mediated transfection of the corresponding TF cDNA into the nonmetastatic parental melanoma line, and the metastatic potential of each transfected line was tested in the SCID mouse model. Metastases occurred in most mice injected with the melanoma lines expressing the extracellular TF mutant but were not detected in most mice injected with the melanoma lines expressing the cytoplasmic TF mutant. Results with the extracellular TF mutant indicate that the metastatic effect of TF in the SCID mouse model does not involve products of the coagulation cascade. Results with the cytoplasmic TF mutant indicate that the cytoplasmic domain of TF is important for the metastatic effect, suggesting that the TF could transduce a melanoma cell signal that promotes metastasis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rodent tumor cells engineered to secrete cytokines such as interleukin 2 (IL-2) or IL-4 are rejected by syngeneic recipients due to an enhanced antitumor host immune response. An adenovirus vector (AdCAIL-2) containing the human IL-2 gene has been constructed and shown to direct secretion of high levels of human IL-2 in infected tumor cells. AdCAIL-2 induces regression of tumors in a transgenic mouse model of mammary adenocarcinoma following intratumoral injection. Elimination of existing tumors in this way results in immunity against a second challenge with tumor cells. These findings suggest that adenovirus vectors expressing cytokines may form the basis for highly effective immunotherapies of human cancers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As the first step of a research program aimed at developing a bispecific monoclonal antibody system for the delivery of boron-rich molecules to tumor cells for boron neutron capture therapy, monoclonal antibodies (mAbs) were produced against an anionic nido-carborane derivative, 4-[7,8-dicarbadodecahydroundecaborat(-1)-7-yl]butanoic acid. Two IgG subclass mAbs, designated HAW101 and HAW102, were identified that specifically bound the anionic nido-carborane hapten, as well as a variety of other anionic nido-carborane cage derivatives. By using surface plasmon resonance technology, the affinity constants of HAW101 and HAW102 were determined to be 1.9 x 10(9) and 6.8 x 10(8) M-1, respectively. A diverse array of 7-substituted and 7,8-disubstituted anionic nido-carborane derivatives reacted with the mAb HAW101 in competition ELISA, whereas anionic closo-polyhedral boranes showed negligible binding, suggesting a role for the open nido-carborane cage structure. These results suggest that mAbs such as HAW101, which bind anionic nido-carboranes, are useful in the development of bispecific mAbs for specific targeting and enhanced boron delivery to tumor sites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The epithelial-specific integrin alpha 6 beta 4 is suprabasally expressed in benign skin tumors (papillomas) and is diffusely expressed in carcinomas associated with an increase in the proliferating compartment. Analysis of RNA samples by reverse transcriptase-PCR and DNA sequencing revealed that chemically or oncogenically induced papillomas (n = 8) expressed a single transcript of the alpha 6 subunit, identified as the alpha 6 A splice variant. In contrast, carcinomas (n = 13) expressed both alpha 6A and an alternatively spliced form, alpha 6B. Primary keratinocytes and a number of keratinocyte cell lines that vary in biological potential from normal skin, to benign papillomas, to well-differentiated slowly growing carcinomas exclusively expressed alpha 6A. However, I7, an oncogene-induced cell line that produces highly invasive carcinomas, expressed both alpha 6A and alpha 6B transcript and protein. The expression of alpha 6B in I7 cells was associated with increased attachment to a laminin matrix compared to cell lines exclusively expressing alpha 6A. Furthermore, introduction of an alpha 6B expression vector into a papilloma cell line expressing alpha 6A increased laminin attachment. When a papilloma cell line was converted to an invasive carcinoma by introduction of the v-fos oncogene, the malignant cells expressed both alpha 6A and alpha 6B, while the parent cell line and cells transduced with v-jun or c-myc, which retained the papilloma phenotype, expressed only alpha 6A. Comparative analysis of alpha 6B expression in cell lines and their derived tumors indicate that alpha 6B transcripts are more abundant in tumors than cell lines, and alpha 6B is expressed to a greater extent in poorly differentiated tumors. These results establish a link between malignant conversion and invasion of squamous tumor cells and the regulation of transcript processing of the alpha 6 beta 4 integrin.