147 resultados para TATA box basal promoter element


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A family of interferon (IFN) regulatory factors (IRFs) have been shown to play a role in transcription of IFN genes as well as IFN-stimulated genes. We report the identification of a member of the IRF family which we have named IRF-3. The IRF-3 gene is present in a single copy in human genomic DNA. It is expressed constitutively in a variety of tissues and no increase in the relative steady-state levels of IRF-3 mRNA was observed in virus-infected or IFN-treated cells. The IRF-3 gene encodes a 50-kDa protein that binds specifically to the IFN-stimulated response element (ISRE) but not to the IRF-1 binding site PRD-I. Overexpression of IRF-3 stimulates expression of the IFN-stimulated gene 15 (ISG15) promoter, an ISRE-containing promoter. The murine IFNA4 promoter, which can be induced by IRF-1 or viral infection, is not induced by IRF-3. Expression of IRF-3 as a Gal4 fusion protein does not activate expression of a chloramphenicol acetyltransferase reporter gene containing repeats of the Gal4 binding sites, indicating that this protein does not contain the transcription transactivation domain. The high amino acid homology between IRF-3 and ISG factor 3 gamma polypeptide (ISGF3 gamma) and their similar binding properties indicate that, like ISGF3 gamma, IRF-3 may activate transcription by complex formation with other transcriptional factors, possibly members of the Stat family. Identification of this ISRE-binding protein may help us to understand the specificity in the various Stat pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transgenic and gene knockout techniques allow for in vivo study of the consequences of adding or subtracting specific genes. However, in some instances, such as the study of lethal mutations or of the physiological consequences of changing gene expression, turning on and off an introduced gene at will would be advantageous. We have used cytochrome p450 1A1 promoter to drive expression of the human apolipoprotein E (apoE) gene in transgenic mice. In six independent lines, robust expression of the transgene depended upon injection of the inducer beta-naphthoflavone, whereas the seventh line had high basal expression that was augmented further by the inducer. The low level of basal expression in an inducer-dependent line was confirmed upon breeding the transgene onto the hypercholesterolemic apoE-deficient background. In the basal state transgene expression was physiologically insignificant, as these mice were as hypercholesterolemic as their nontransgenic apoE-deficient littermates. When injected with the inducer, plasma cholesterol levels of the transgenic mice decreased dramatically as apoE expression was induced to yield greater than physiological levels in plasma. The inducer could pass transplacentally from an injected mother to her fetuses with concomitant induction of fetal transgene mRNA. Inducer could also pass via breast milk from an injected mother to her suckling neonatal pups, giving rise to the induction of human apoE in neonate plasma. These finding suggest a strategy to temporarily ameliorate genetic deficiencies that would otherwise lead to fetal or neonatal lethality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have been studying the role and mechanism of estrogen action in the survival and differentiation of neurons in the basal forebrain and its targets in the cerebral cortex, hippocampus, and olfactory bulb. Previous work has shown that estrogen-target neurons in these regions widely coexpress the mRNAs for the neurotrophin ligands and their receptors, suggesting a potential substrate for estrogen-neurotrophin interactions. Subsequent work indicated that estrogen regulates the expression of two neurotrophin receptor mRNAs in prototypic peripheral neural targets of nerve growth factor. We report herein that the gene encoding the neurotophin brain-derived neurotrophic factor (BDNF) contains a sequence similar to the canonical estrogen response element found in estrogen-target genes. Gel shift and DNA footprinting assays indicate that estrogen receptor-ligand complexes bind to this sequence in the BDNF gene. In vivo, BDNF mRNA was rapidly up-regulated in the cerebral cortex and the olfactory bulb of ovariectomized animals exposed to estrogen. These data suggest that estrogen may regulate BDNF transcription, supporting our hypothesis that estrogen may be in a position to influence neurotrophin-mediated cell functioning, by increasing the availability of specific neurotrophins in forebrain neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Epstein-Barr virus-encoded nuclear antigen EBNA-1 gene promoter for the restricted Epstein-Barr virus (EBV) latency program operating in group I Burkitt lymphoma (BL) cell lines was previously identified incorrectly. Here we present evidence from RACE (rapid amplification of cDNA ends) cloning, reverse transcription-PCR, and S1 nuclease analyses, which demonstrates that the EBNA-1 gene promoter in group I BL cell lines is located in the viral BamHI Q fragment, immediately upstream of two low-affinity EBNA-1 binding sites. Transcripts initiated from this promoter, referred to as Qp, have the previously reported Q/U/K exon splicing pattern. Qp is active in group I BL cell lines but not in group III BL cell lines or in EBV immortalized B-lymphoblastoid cell lines. In addition, transient transfection of Qp-driven reporter constructs into both an EBV-negative BL cell line and a group I BL cell line gave rise to correctly initiated transcripts. Inspection of Qp revealed that it is a TATA-less promoter whose architecture is similar to the promoters of housekeeping genes, suggesting that Qp may be a default promoter which ensures EBNA-1 expression in cells that cannot run the full viral latency program. Elucidation of the genetic mechanism responsible for the EBNA-1-restricted program of EBV latency is an essential step in understanding control of viral latency in EBV-associated tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sequence of epithelial cell proliferation, allocation to four principal lineages, migration-associated differentiation, and cell loss occurs along the crypt-villus axis of the mouse intestine. The sequence is completed in a few days and is recapitulated throughout the life-span of the animal. We have used an intestine-specific fatty acid binding protein gene, Fabpi, as a model for studying regulation of gene expression in this unique developmental system. Promoter mapping studies in transgenic mice identified a 20-bp cis-acting element (5'-AGGTGGAAGCCATCACACTT-3') that binds small intestinal nuclear proteins and participates in the control of Fabpi's cephalocaudal, differentiation-dependent, and cell lineage-specific patterns of expression. Immunocytochemical studies using confocal and electron microscopy indicate that it does so by acting as a suppressor of gene expression in the distal small intestine/colon, as a suppressor of gene activation in proliferating and nonproliferating cells located in the crypts of Lieberkühn, and as a suppressor of expression in the growth factor and defensin-producing Paneth cell lineage. The 20-bp domain has no obvious sequence similarities to known transcription factor binding sites. The three functions modulated by this compact element represent the types of functions required to establish and maintain the intestine's remarkably complex spatial patterns of gene expression. The transgenes described in this report also appear to be useful in characterizing the crypt's stem cell hierarchy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The retinoid X receptor (RXR) participates in a wide array of hormonal signaling pathways, either as a homodimer or as a heterodimer, with other members of the steroid and thyroid hormone receptor superfamily. In this report the ligand-dependent transactivation function of RXR has been characterized, and the ability of RXR to interact with components of the basal transcription machinery has been examined. In vivo and in vitro experiments indicate the RXR ligand-binding domain makes a direct, specific, and ligand-dependent contact with a highly conserved region of the TATA-binding protein. The ability of mutations that reduce ligand-dependent transcription by RXR to disrupt the RXR-TATA-binding protein interaction in vivo and in vitro suggests that RXR makes direct contact with the basal transcription machinery to achieve activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vascular endothelial cells, serving as a barrier between vessel and blood, are exposed to shear stress in the body. Although endothelial responses to shear stress are important in physiological adaption to the hemodynamic environments, they can also contribute to pathological conditions--e.g., in atherosclerosis and reperfusion injury. We have previously shown that shear stress mediates a biphasic response of monocyte chemotactic protein 1 (MCP-1) gene expression in vascular endothelial cells and that the regulation is at the transcriptional level. These observations led us to functionally analyze the 550-bp promoter region of the MCP-1-encoding gene to define the cis element responding to shear stress. The shear stress/luciferase assay on the deletion constructs revealed that a 38-bp segment (-53 to -90 bp relative to the transcription initiation site) containing two divergent phorbol ester "12-O-tetradecanoylphorbol 13-acetate" (TPA)-responsive elements (TRE) is critical for shear inducibility. Site-specific mutations on these two sites further demonstrated that the proximal one (TGACTCC) but not the distal one (TCACTCA) was shear-responsive. Shear inducibility was lost after the mutation or deletion of the proximal site. This molecular mechanism of shear inducibility of the MCP-1 gene was functional in both the epithelial-like HeLa cells and bovine aortic endothelial cells (BAEC). In a construct with four copies of the TRE consensus sequences TGACTACA followed by the rat prolactin minimal promoter and luciferase gene, shear stress induced the reporter activities by 35-fold and 7-fold in HeLa cells and BAEC, respectively. The application of shear stress on BAEC also induced a rapid and transient phosphorylation of mitogen-activated protein kinases. Pretreatment of BAEC with TPA attenuated the shear-induced mitogen-activated protein kinase phosphorylation, suggesting that shear stress and TPA share a similar signal transduction pathway in activating cells. The present study provides a molecular basis for the transient induction of MCP-1 gene by shear stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human peripheral blood lymphocytes (PBLs) were transduced with a number of recombinant retroviruses including RRz2, an LNL6-based virus with a ribozyme targeted to the human immunodeficiency virus (HIV) tat gene transcript inserted within the 3' region of the neomycin-resistance gene; RASH5, and LNHL-based virus containing an antisense sequence to the 5' leader region of HIV-1 downstream of the human cytomegalovirus promoter; and R20TAR, an LXSN-based virus with 20 tandem copies of the HIV-1 trans-activation response element sequence driven by the Moloney murine leukemia virus long terminal repeat. After G418 selection, transduced PBLs were challenged with the HIV-1 laboratory strain IIIB and a primary clinical isolate of HIV-1, 82H. Results showed that PBLs from different donors could be transduced and that this conferred resistance to HIV-1 infection. For each of the constructs, a reduction of approximately 70% in p24 antigen level relative to the corresponding control-vector-transduced PBLs was observed. Molecular analyses showed constitutive expression of all the transduced genes from the retroviral long terminal repeat, but no detectable transcript was seen from the internal human cytomegalovirus transcript was seen from the internal human cytomegalovirus promoter for the antisense construct. Transduction of, and consequent transgene expression in, PBLs did not impact on the surface expression of either CD4+/CD8+ (measured by flow cytometry) or on cell doubling time (examined by [3H]thymidine uptake). These results indicate the potential utility of these anti-HIV-1 gene therapeutic agents and show the preclinical value of this PBL assay system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Contractile proteins are encoded by multigene families, most of whose members are differentially expressed in fast- versus slow-twitch myofibers. This fiber-type-specific gene regulation occurs by unknown mechanisms and does not occur within cultured myocytes. We have developed a transient, whole-animal assay using somatic gene transfer to study this phenomenon and have identified a fiber-type-specific regulatory element within the promoter region of a slow myofiber-specific gene. A plasmid-borne luciferase reporter gene fused to various muscle-specific contractile gene promoters was differentially expressed when injected into slow- versus fast-twitch rat muscle: the luciferase gene was preferentially expressed in slow muscle when fused to a slow troponin I promoter, and conversely, was preferentially expressed in fast muscle when fused to a fast troponin C promoter. In contrast, the luciferase gene was equally well expressed by both muscle types when fused to a nonfiber-type-specific skeletal actin promoter. Deletion analysis of the troponin I promoter region revealed that a 157-bp enhancer conferred slow-muscle-preferential activity upon a minimal thymidine kinase promoter. Transgenic analysis confirmed the role of this enhancer in restricting gene expression to slow-twitch myofibers. Hence, somatic gene transfer may be used to rapidly define elements that direct myofiber-type-specific gene expression prior to the generation of transgenic mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The p53 protein activates transcription of a target gene by binding to a specific DNA response element and interacting with the transcriptional apparatus of RNA polymerase II. The amino-terminal domain of p53 interacts with a component of the TFIID basal transcription complex. The human TATA-binding-protein-associated factor TAFII31, a component of TFIID, has been identified as a critical protein required for p53-mediated transcriptional activation. TAFII31 and p53 proteins bind to each other via amino acid residues in the amino-terminal domain of p53 that are essential for transcription. Antibodies directed against TAFII31 protein inhibit p53-activated but not basal transcription in vitro. These results demonstrate that TAFII31 is a coactivator for the p53 protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ear3/COUP is an orphan member of the steroid/thyroid hormone receptor superfamily of transcription factors and binds most tightly to a direct repeat of AGGTCA with 1 nucleotide in between (DR1). Ear3/COUP also binds with a similar affinity to the palindromic thyroid hormone response element (TRE). This binding preference of Ear3/COUP is same as that of the retinoid X receptor (RXR), which is another member of the superfamily. In the present study, we identified a sequence responsible for Ear3/COUP-mediated transactivation in the region downstream of the transcription start site of the mouse mammary tumor virus promoter. This cis-acting sequence was unresponsive to RXR. When the DR1 or TRE sequence was added upstream of the promoter, transactivation by Ear3/COUP was completely abolished, whereas RXR enhanced transcription from the promoter. The mode of action of Ear3/COUP could be utilized to control complex gene expressions in morphogenesis, homeostasis, and development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human general transcription factor TFIIA is one of several factors involved in specific transcription by RNA polymerase II, possibly by regulating the activity of the TATA-binding subunit (TBP) of TFIID. TFIIA purified from HeLa extracts consists of 35-, 19-, and 12-kDa subunits. Here we describe the isolation of a cDNA clone (hTFIIA gamma) encoding the 12-kDa subunit. Using expression constructs derived from hTFIIA gamma and TFIIA alpha/beta (which encodes a 55-kDa precursor to the alpha and beta subunits of natural TFIIA), we have constructed a synthetic TFIIA with a polypeptide composition similar to that of natural TFIIA. The recombinant complex supports the formation of a DNA-TBP-TFIIA complex and mediates both basal and Gal4-VP16-activated transcription by RNA polymerase II in TFIIA-depleted nuclear extracts. In contrast, TFIIA has no effect on tRNA and 5S RNA transcription by RNA polymerase III in this system. We also present evidence that both the p55 and p12 recombinant subunits interact with TBP and that the basic region of TBP is critical for the TFIIA-dependent function of TBP in nuclear extracts.