188 resultados para Nuclear DNA ITS region


Relevância:

40.00% 40.00%

Publicador:

Resumo:

DNA-dependent protein kinase (DNA-PK) consists of a heterodimeric protein (Ku) and a large catalytic subunit (DNA-PKcs). The Ku protein has double-stranded DNA end-binding activity that serves to recruit the complex to DNA ends. Despite having serine/threonine protein kinase activity, DNA-PKcs falls into the phosphatidylinositol 3-kinase superfamily. DNA-PK functions in DNA double-strand break repair and V(D)J recombination, and recent evidence has shown that mouse scid cells are defective in DNA-PKcs. In this study we have cloned the cDNA for the carboxyl-terminal region of DNA-PKcs in rodent cells and identified the existence of two differently spliced products in human cells. We show that DNA-PKcs maps to the same chromosomal region as the mouse scid gene. scid cells contain approximately wild-type levels of DNA-PKcs transcripts, whereas the V-3 cell line, which is also defective in DNA-PKcs, contains very reduced transcript levels. Sequence comparison of the carboxyl-terminal region of scid and wild-type mouse cells enabled us to identify a nonsense mutation within a highly conserved region of the gene in mouse scid cells. This represents a strong candidate for the inactivating mutation in DNA-PKcs in the scid mouse.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two genetic events contribute to the development of endemic Burkitt lymphoma (BL) infection of B lymphocytes with Epstein-Barr virus (EBV) and the activation of the protooncogene c-myc through chromosomal translocation. The viral genes EBV nuclear antigen 2 (EBNA2) and latent membrane protein 1 (LMP1) are essential for transformation of primary human B cells by EBV in vitro; however, these genes are not expressed in BL cells in vivo. To address the question whether c-myc activation might abrogate the requirement of the EBNA2 and LMP1 function, we have introduced an activated c-myc gene into an EBV-transformed cell line in which EBNA2 was rendered estrogen-dependent through fusion with the hormone binding domain of the estrogen receptor. The c-myc gene was placed under the control of regulatory elements of the immunoglobulin kappa locus composed a matrix attachment region, the intron enhancer, and the 3' enhancer. We show here that transfection of a c-myc expression plasmid followed by selection for high MYC expression is capable of inducing continuous proliferation of these cells in the absence of functional EBNA2 and LMP1. c-myc-induced hormone-independent proliferation was associated with a dramatic change in the growth behavior as well as cell surface marker expression of these cells. The typical lymphoblastoid morphology and phenotype of EBV-transformed cells completely changed into that of BL cells in vivo. We conclude that the phenotype of BL cells reflects the expression pattern of viral and cellular genes rather than its germinal center origin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The proliferating cell nuclear antigen (PCNA) acts as a processivity factor for replicative DNA polymerases and is essential for DNA replication. In vitro studies have suggested a role for PCNA-in the repair synthesis step of nucleotide excision repair, and PCNA interacts with the cyclin-dependent kinase inhibitor p21. However, because of the lack of genetic evidence, it is not clear which of the DNA repair processes are in fact affected by PCNA in vivo. Here, we describe a PCNA mutation, pol30-46, that confers ultraviolet (UV) sensitivity but has no effect on growth or cell cycle progression, and the mutant pcna interacts normally with DNA polymerase delta and epsilon. Genetic studies indicate that the pol30-46 mutation is specifically defective in RAD6-dependent postreplicational repair of UV damaged DNA, and this mutation impairs the error-free mode of bypass repair. These results implicate a role for PCNA as an intermediary between DNA replication and postreplicational DNA repair.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Caffeic acid phenethyl ester (CAPE), an active component of propolis from honeybee hives, is known to have antimitogenic, anticarcinogenic, antiinflammatory, and immunomodulatory properties. The molecular basis for these diverse properties is not known. Since the role of the nuclear factor NF-kappa B in these responses has been documented, we examined the effect of CAPE on this transcription factor. Our results show that the activation of NF-kappa B by tumor necrosis factor (TNF) is completely blocked by CAPE in a dose- and time-dependent manner. Besides TNF, CAPE also inhibited NF-kappa B activation induced by other inflammatory agents including phorbol ester, ceramide, hydrogen peroxide, and okadaic acid. Since the reducing agents reversed the inhibitory effect of CAPE, it suggests the role of critical sulfhydryl groups in NF-kappa B activation. CAPE prevented the translocation of the p65 subunit of NF-kappa B to the nucleus and had no significant effect on TNF-induced I kappa B alpha degradation, but did delay I kappa B alpha resynthesis. The effect of CAPE on inhibition of NF-kappa B binding to the DNA was specific, in as much as binding of other transcription factors including AP-1, Oct-1, and TFIID to their DNA were not affected. When various synthetic structural analogues of CAPE were examined, it was found that a bicyclic, rotationally constrained, 5,6-dihydroxy form was superactive, whereas 6,7-dihydroxy variant was least active. Thus, overall our results demonstrate that CAPE is a potent and a specific inhibitor of NF-kappa B activation and this may provide the molecular basis for its multiple immunomodulatory and antiinflammatory activities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Tsc2 gene, which is mutationally inactivated in the germ line of some families with tuberous sclerosis, encodes a large, membrane-associated GTPase activating protein (GAP) designated tuberin. Studies of the Eker rat model of hereditary cancer strongly support the role of Tsc2 as a tumor suppressor gene. In this study, the biological activity of tuberin was assessed by expressing the wild-type Tsc2 gene in tumor cell lines lacking functional tuberin and also in rat fibroblasts with normal levels of endogenous tuberin. The colony forming efficiency of Eker rat-derived renal carcinoma cells was significantly reduced following reintroduction of wild-type Tsc2. Tumor cells expressing the transfected Tsc2 gene became more anchorage-dependent and lost their ability to form tumors in severe combined immunodeficient mice. At the cellular level, restoration of tuberin expression caused morphological changes characterized by enlargement of the cells and increased contact inhibition. As with the full-length Tsc2 gene, a clone encoding only the C terminus of tuberin (amino acids 1049-1809, including the GAP domain) was capable of reducing both colony formation and in vivo tumorigenicity when transfected into the Eker rat tumor cells. In normal Rat1 fibroblasts, conditional overexpression of tuberin also suppressed colony formation and cell growth in vitro. These results provide direct experimental evidence for the tumor suppressor function of Tsc2 and suggest that the tuberin C terminus plays an important role in this activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Xeroderma pigmentosum type G (XPG) is a human genetic disease exhibiting extreme sensitivity to sunlight. XPG patients are defective XPG endonuclease, which is an enzyme essential for DNA repair of the major kinds of solar ultraviolet (UV)-induced DNA damages. Here we describe a novel dynamics of this protein within the cell nucleus after UV irradiation of human cells. Using confocal microscopy, we have localized the immunofluorescent, antigenic signal of XPG protein to foci throughout the cell nucleus. Our biochemical studies also established that XPG protein forms a tight association with nuclear structure(s). In human skin fibroblast cells, the number of XPG foci decreased within 2 h after UV irradiation, whereas total nuclear XPG fluorescence intensity remained constant, suggesting redistribution of XPG from a limited number of nuclear foci to the nucleus overall. Within 8 h after UV, most XPG antigenic signal was found as foci. Using beta-galactosidase-XPG fusion constructs (beta-gal-XPG) transfected into HeLa cells, we have identified a single region of XPG that is evidently responsible both for foci formation and for the UV dynamic response. The fusion protein carrying the C terminus of XPG (amino acids 1146-1185) localized beta-gal specific antigenic signal to foci and to the nucleolus regions. After UV irradiation, antigenic beta-gal translocated reversibly from the subnuclear structures to the whole nucleus with kinetics very similar to the movements of XPG protein. These findings lead us to propose a model in which distribution of XPG protein may regulate the rate of DNA repair within transcriptionally active and inactive compartments of the cell nucleus.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The phenomenon of RNA editing has been found to occur in chloroplasts of several angiosperm plants. Comparative analysis of the entire nucleotide sequence of a gymnosperm [Pinus thunbergii (black pine)] chloroplast genome allowed us to predict several potential editing sites in its transcripts. Forty-nine such sites from 14 genes/ORFs were analyzed by sequencing both cDNAs from the transcripts and the corresponding chloroplast DNA regions, and 26 RNA editing sites were identified in the transcripts from 12 genes/ORFs, indicating that chloroplast RNA editing is not restricted to angiosperms but occurs in the gymnosperm, too. All the RNA editing events are C-to-U conversions; however, many new codon substitutions and creation of stop codons that have not so far been reported in angiosperm chloroplasts were observed. The most striking is that two editing events result in the creation of an initiation and a stop codon within a single transcript, leading to the formation of a new reading frame of 33 codons. The predicted product is highly homologous to that deduced from the ycf7 gene (ORF31), which is conserved in the chloroplast genomes of many other plant species.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The vaccinia virus early transcription factor (VETF), a heterodimeric protein composed of 82- and 70-kDa subunits, interacts with viral early promoters at both a sequence-specific core region upstream and a sequence-independent region downstream of the RNA start site. To determine the VETF subunit-promoter interactions, 32P-labeled DNA targets were chemically synthesized with uniquely positioned phosphorothioates to which azidophenacyl bromide moieties were coupled. After incubating the derivatized promoter with VETF and exposing the complex to 302-nm light, the protein was denatured and the individual subunits with or without covalently bound DNA were isolated with specific antiserum and analyzed by SDS/polyacrylamide gel electrophoresis. Using a set of 26 duplex probes, with uniquely positioned aryl azide moieties on the coding or template strands, we found that the 82-kDa subunit interacted primarily with the core region of the promoter, whereas the 70-kDa subunit interacted with the downstream region. Nucleotide substitutions in the core region that downregulate transcription affected the binding of both subunits: the 82-kDa subunit no longer exhibited specificity for upstream regions of the promoter but also bound to downstream regions, whereas the binding of the 70-kDa subunit was abolished even though the mutations were far upstream of its binding site. These results suggested mechanisms by which the interaction of the 82-kDa subunit with the core sequence directs binding of the 70-kDa subunit to DNA downstream.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The relationship of the important cellulase producing asexual fungus Trichoderma reesei to its putative teleomorphic (sexual) ancestor Hypocrea jecorina and other species of the Trichoderma sect. Longibrachiatum was studied by PCR-fingerprinting and sequence analyses of the nuclear ribosomal DNA region containing the internal transcribed spacers (ITS-1 and ITS-2) and the 5.8S rRNA gene. The differences in the corresponding ITS sequences allowed a grouping of anamorphic (asexual) species of Trichoderma sect. Longibrachiatum into Trichoderma longibrachiatum, Trichoderma pseudokoningii, and Trichoderma reesei. The sexual species Hypocrea schweinitzii and H. jecorina were also clearly separated from each other. H. jecorina and T. reesei exhibited identical sequences, suggesting close relatedness or even species identity. Intraspecific and interspecific variation in the PCR-fingerprinting patterns supported the differentiation of species based on ITS sequences, the grouping of the strains, and the assignment of these strains to individual species. The variations between T. reesei and H. jecorina were at the same order of magnitude as found between all strains of H. jecorina, but much lower than the observed interspecific variations. Identical ITS sequences and the high similarity of PCR-fingerprinting patterns indicate a very close relationship between T. reesei and H. jecorina, whereas differences of the ITS sequences and the PCR-fingerprinting patterns show a clear phylogenetic distance between T. reesei/H. jecorina and T. longibrachiatum. T. reesei is considered to be an asexual, clonal line derived from a population of the tropical ascomycete H. jecorina.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The inhibition of DNA synthesis prevents mitotic entry through the action of the S phase checkpoint. In the yeast Saccharomyces cerevisiae, an essential protein kinase, Spk1/Mec2/Rad53/Sad1, controls the coupling of S phase to mitosis. In an attempt to identify genes that genetically interact with Spk1, we have isolated a temperature-sensitive mutation, rfc5-1, that can be suppressed by overexpression of SPK1. The RFC5 gene encodes a small subunit of replication factor C complex. At the restrictive temperature, rfc5-1 mutant cells entered mitosis with unevenly separated or fragmented chromosomes, resulting in loss of viability. Thus, the rfc5 mutation defective for DNA replication is also impaired in the S phase checkpoint. Overexpression of POL30, which encodes the proliferating cell nuclear antigen, suppressed the replication defect of the rfc5 mutant but not its checkpoint defect. Taken together, these results suggested that replication factor C has a direct role in sensing the state of DNA replication and transmitting the signal to the checkpoint machinery.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We describe molecular and clinical findings in an immunocompetent patient with an oligoastrocytoma and the concomitant presence of the human papovavirus, JC virus (JCV), which is the etiologic agent of the subacute, debilitating demyelinating disease, progressive multifocal leukoencephalopathy. Histologic review revealed a glial neoplasm consisting primarily of a moderately cellular oligodendroglioma with distinct areas of a fibrillary astrocytoma. Immunohistochemical analysis revealed nuclear staining of tumor cells with antibodies against the viral oncoprotein [tumor antigen (T antigen)], the proliferation marker (Ki67), and the cellular proliferation regulator (p53). Using primers specific to the JCV control region, PCR yielded amplified DNA that was identical to the control region of the Mad-4 strain of the virus. PCR analysis demonstrated the presence of the genome for the viral oncoprotein, T antigen, and results from primer extension studies revealed synthesis of the viral early RNA for T antigen in the tumor tissues. The presence of viral T antigen in the tumor tissue was further demonstrated by immunoblot assay. To our knowledge, this is the first report of the presence of JCV DNA, RNA, and T antigen in tissue in which viral T antigen is localized to tumor cell nuclei and suggests the possible association of JCV with some glial neoplasms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Replication factor C (RFC, also called Activator I) is part of the processive eukaryotic DNA polymerase holoenzymes. The processive elongation of DNA chains requires that DNA polymerases are tethered to template DNA at primer ends. In eukaryotes the ring-shaped homotrimeric protein, proliferating cell nuclear antigen (PCNA), ensures tight template-polymerase interaction by encircling the DNA strand. Proliferating cell nuclear antigen is loaded onto DNA through the action of RFC in an ATP-dependent reaction. Human RFC is a protein complex consisting of five distinct subunits that migrate through SDS/polyacrylamide gels as protein bands of 140, 40, 38, 37, and 36 kDa. All five genes encoding the RFC subunits have been cloned and sequenced. A functionally identical RFC complex has been isolated from Saccharomyces cerevisiae and the deduced amino acid sequences among the corresponding human and yeast subunits are homologous. Here we report the expression of the five cloned human genes using an in vitro coupled transcription/translation system and show that the gene products form a complex resembling native RFC that is active in supporting an RFC-dependent replication reaction. Studies on the interactions between the five subunits suggest a cooperative mechanism in the assembly of the RFC complex. A three-subunit core complex, consisting of p36, p37, and p40, was identified and evidence is presented that p38 is essential for the interaction between this core complex and the large p140 subunit.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

By using proteolysis, recombinant mutant proteins, or synthetic peptides and by testing these reagents in liquid phase binding or nuclear import assays, we have mapped binding regions of karyopherin alpha. We found that the C-terminal region of karyopherin alpha recognizes the nuclear localization sequence (NLS), whereas its N-terminal region binds karyopherin beta. Surprisingly, karyopherin alpha also contains an NLS. Thus, karyopherin alpha belongs to a group of proteins that contain both a ligand (NLS) and a cognate receptor (NLS recognition site) in one molecule with a potential for autologous ligand-receptor interactions. The NLS of karyopherin alpha overlaps with the binding site of karyopherin alpha for karyopherin beta. Hence, binding of karyopherin beta to karyopherin alpha covers the NLS of karyopherin alpha. This prevents autologous ligand receptor interactions and explains the observed cooperative binding of karyopherin alpha to a heterologous NLS protein in the presence of karyopherin beta.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The histone gene family in mammals consists of 15-20 genes for each class of nucleosomal histone protein. These genes are classified as either replication-dependent or -independent in regard to their expression in the cell cycle. The expression of the replication-dependent histone genes increases dramatically as the cell prepares to enter S phase. Using mouse histone genes, we previously identified a coding region activating sequence (CRAS) involved in the upregulation of at least two (H2a and H3) and possibly all nucleosomal replication-dependent histone genes. Mutation of two seven-nucleotide elements, alpha and omega, within the H3 CRAS causes a decrease in expression in stably transfected Chinese hamster ovary cells comparable with the effect seen upon deletion of the entire CRAS. Further, nuclear proteins interact in a highly specific manner with nucleotides within these sequences. Mutation of these elements abolishes DNA/protein interactions in vitro. Here we report that the interactions of nuclear factors with these elements are differentially regulated in the cell cycle and that protein interactions with these elements are dependent on the phosphorylation/dephosphorylation state of the nuclear factors.