278 resultados para Maltose-binding protein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously identified a testicular phosphoprotein that binds to highly conserved sequences (Y and H elements) in the 3' untranslated regions (UTRs) of testicular mRNAs and suppresses in vitro translation of mRNA constructs that contain these sequences. This protein, testis/brain RNA-binding protein (TB-RBP) also is abundant in brain and binds to brain mRNAs whose 3' UTRs contain similar sequences. Here we show that TB-RBP binds specific mRNAs to microtubules (MTs) in vitro. When TB-RBP is added to MTs reassembled from either crude brain extracts or from purified tubulin, most of the TB-RBP binds to MTs. The association of TB-RBP with MTs requires the assembly of MTs and is diminished by colcemid, cytochalasin D, and high levels of salt. Transcripts from the 3' UTRs of three mRNAs that contain the conserved sequence elements (transcripts for protamine 2, tau protein, and myelin basic protein) are linked by TB-RBP to MTs, whereas transcripts that lack the conserved sequences do not bind TB-RBP. We conclude that TB-RBP serves as an attachment protein for the MT association of specific mRNAs. Considering its ability to arrest translation in vitro, we propose that TB-RBP functions in the storage and transportation of mRNAs to specific intracellular sites where they are translated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To explore the relationship between mitochondrial aspartate aminotransferase (mAspAT; EC 2.6.1.1) and plasma membrane fatty acid-binding protein (FABPpm) and their role in cellular fatty acid uptake, 3T3 fibroblasts were cotransfected with plasmid pMAAT2, containing a full-length mAspAT cDNA downstream of a Zn(2+)-inducible metallothionein promoter, and pFR400, which conveys methotrexate resistance. Transfectants were selected in methotrexate, cloned, and exposed to increasing methotrexate concentrations to induce gene amplification. Stably transfected clones were characterized by Southern blotting; those with highest copy numbers of pFR400 alone (pFR400) or pFR400 and pMAAT2 (pFR400/pMAAT2) were expanded for further study. [3H]Oleate uptake was measured in medium containing 500 microM bovine serum albumin and 125-1000 microM total oleate (unbound oleate, 18-420 nM) and consisted of saturable and nonsaturable components. pFR400/pMAAT2 cells exhibited no increase in the rate constant for nonsaturable oleate uptake or in the uptake rate of [14C]octanoate under any conditions. By contrast, Vmax (fmol/sec per 50,000 cells) of the saturable oleate uptake component increased 3.5-fold in pFR400/pMAAT2 cells compared to pFR400, with a further 3.2-fold increase in the presence of Zn2+. Zn2+ had no effect in pFR400 controls (P > 0.5). The overall increase in Vmax between pFR400 and pFR400/pMAAT2 in the presence of Zn2+ was 10.4-fold (P < 0.01) and was highly correlated (r = 0.99) with expression of FABPpm in plasma membranes as determined by Western blotting. Neither untransfected 3T3 nor pFR400 cells expressed cell surface FABPpm detectable by immunofluorescence. By contrast, plasma membrane immunofluorescence was detected in pFR400/pMAAT2 cells, especially if cultured in 100 microM Zn2+. The data support the dual hypotheses that mAspAT and FABPpm are identical and mediate saturable long-chain free fatty acid uptake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recoverin is a member of the EF-hand family of calcium-binding proteins involved in the transduction of light by vertebrate photoreceptors. Recoverin also was identified as an autoantigen in the degenerative disease of the retina known as cancer-associated retinopathy (CAR), a paraneoplastic syndrome whereby immunological events lead to the degeneration of photoreceptors in some individuals with cancer. In this study, we demonstrate that recoverin is expressed in the lung tumor of a CAR patient but not in similar tumors obtained from individuals without the associated retinopathy. Recoverin was identified intially by Western blot analysis of the CAR patient's biopsy tissue by using anti-recoverin antibodies generated against different regions of the recoverin molecule. In addition, cultured cells from the biopsy tissue expressed recoverin, as demonstrated by reverse transcription-PCR using RNA extracted from the cells. The immunodominant region of recoverin also was determined in this study by a solid-phase immunoassay employing overlapping heptapeptides encompassing the entire recoverin sequence. Two linear stretches of amino acids (residues 64-70, Lys-Ala-Tyr-Ala-Gln-His-Val; and 48-52, Gln-Phe-Gln-Ser-Ile) made up the major determinants. One of the same regions of the recoverin molecule (residues 64-70) also was uniquely immunopathogenic, causing photoreceptor degeneration upon immunization of Lewis rats with the corresponding peptide. These data demonstrate that the neural antigen recoverin more than likely is responsible for the immunological events associated with vision loss in some patients with cancer. These data also establish CAR as one of the few autoimmune-mediated diseases for which the specific self-antigen is known.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanism under which the signal-reception amino-terminal portion (A domain) of the prokaryotic enhancer-binding protein XylR controls the activity of the regulator has been investigated through complementation tests in vivo, in which the various protein segments were produced as independent polypeptides. Separate expression of the A domain repressed the otherwise constitutive activity of a truncated derivative of XylR deleted of its A domain (XylR delta A). Such inhibition was not released by m-xylene, the natural inducer of the system. Repression caused by the A domain was specific for XylR because it did not affect activation of the sigma 54 promoter PnifH by a derivative of its cognate regulator, NifA, deleted of its own A domain. The A domain was also unable to repress the activity of a NifA-XylR hybrid protein resulting from fusing two-thirds of the central domain of NifA to the carboxyl-terminal third of XylR, which includes its DNA-binding domain. The inhibitory effect caused by the A domain of XylR on XylR delta A seems, therefore, to result from specific interactions in trans between the two truncated proteins and not from mere hindering of an activating surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sequence of epithelial cell proliferation, allocation to four principal lineages, migration-associated differentiation, and cell loss occurs along the crypt-villus axis of the mouse intestine. The sequence is completed in a few days and is recapitulated throughout the life-span of the animal. We have used an intestine-specific fatty acid binding protein gene, Fabpi, as a model for studying regulation of gene expression in this unique developmental system. Promoter mapping studies in transgenic mice identified a 20-bp cis-acting element (5'-AGGTGGAAGCCATCACACTT-3') that binds small intestinal nuclear proteins and participates in the control of Fabpi's cephalocaudal, differentiation-dependent, and cell lineage-specific patterns of expression. Immunocytochemical studies using confocal and electron microscopy indicate that it does so by acting as a suppressor of gene expression in the distal small intestine/colon, as a suppressor of gene activation in proliferating and nonproliferating cells located in the crypts of Lieberkühn, and as a suppressor of expression in the growth factor and defensin-producing Paneth cell lineage. The 20-bp domain has no obvious sequence similarities to known transcription factor binding sites. The three functions modulated by this compact element represent the types of functions required to establish and maintain the intestine's remarkably complex spatial patterns of gene expression. The transgenes described in this report also appear to be useful in characterizing the crypt's stem cell hierarchy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osmoregulated porin gene expression in Escherichia coli is controlled by the two-component regulatory system EnvZ and OmpR. EnvZ, the osmosensor, is an inner membrane protein and a histidine kinase. EnvZ phosphorylates OmpR, a cytoplasmic DNA-binding protein, on an aspartyl residue. Phospho-OmpR binds to the promoters of the porin genes to regulate the expression of ompF and ompC. We describe the use of limited proteolysis by trypsin and ion spray mass spectrometry to characterize phospho-OmpR and the conformational changes that occur upon phosphorylation. Our results are consistent with a two-domain structure for OmpR, an N-terminal phosphorylation domain joined to a C-terminal DNA-binding domain by a flexible linker region. In the presence of acetyl phosphate, OmpR is phosphorylated at only one site. Phosphorylation induces a conformational change that is transmitted to the C-terminal domain via the central linker. Previous genetic analysis identified a region in the C-terminal domain that is required for transcriptional activation. Our results indicate that this region is within a surface-exposed loop. We propose that this loop contacts the alpha subunit of RNA polymerase to activate transcription. Mass spectrometry also reveals an unusual dephosphorylated form of OmpR, the potential significance of which is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The retinoid X receptor (RXR) participates in a wide array of hormonal signaling pathways, either as a homodimer or as a heterodimer, with other members of the steroid and thyroid hormone receptor superfamily. In this report the ligand-dependent transactivation function of RXR has been characterized, and the ability of RXR to interact with components of the basal transcription machinery has been examined. In vivo and in vitro experiments indicate the RXR ligand-binding domain makes a direct, specific, and ligand-dependent contact with a highly conserved region of the TATA-binding protein. The ability of mutations that reduce ligand-dependent transcription by RXR to disrupt the RXR-TATA-binding protein interaction in vivo and in vitro suggests that RXR makes direct contact with the basal transcription machinery to achieve activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The herpes simplex virus 1 (HSV-1) genome encodes seven polypeptides that are required for its replication. These include a heterodimeric DNA polymerase, a single-strand-DNA-binding protein, a heterotrimeric helicase/primase, and a protein (UL9 protein) that binds specifically to an HSV-1 origin of replication (oris). We demonstrate here that UL9 protein interacts specifically with the 180-kDa catalytic subunit of the cellular DNA polymerase alpha-primase. This interaction can be detected by immunoprecipitation with antibodies directed against either of these proteins, by gel mobility shift of an oris-UL9 protein complex, and by stimulation of DNA polymerase activity by the UL9 protein. These findings suggest that enzymes required for cellular DNA replication also participate in HSV-1 DNA replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frequenin was originally identified in Drosophila melanogaster as a Ca(2+)-binding protein facilitating transmitter release at the neuromuscular junction. We have cloned the Xenopus frequenin (Xfreq) by PCR using degenerate primers combined with low-stringency hybridization. The deduced protein has 70% identity with Drosophila frequenin and about 38-58% identity with other Ca(2+)-binding proteins. The most prominent features are the four EF-hands, Ca(2+)-binding motifs. Xfreq mRNA is abundant in the brain and virtually nondetectable from adult muscle. Western blot analysis indicated that Xfreq is highly concentrated in the adult brain and is absent from nonneural tissues such as heart and kidney. During development, the expression of the protein correlated well with the maturation of neuromuscular synapses. To determine the function of Xfreq at the developing neuromuscular junction, the recombinant protein was introduced into Xenopus embryonic spinal neurons by early blastomere injection. Synapses made by spinal neurons containing exogenous Xfreq exhibited a much higher synaptic efficacy. These results provide direct evidence that frequenin enhances transmitter release at the vertebrate neuromuscular synapse and suggest its potential role in synaptic development and plasticity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

YPT/rab proteins are ras-like small GTP-binding proteins that serve as key regulators of vesicular transport. The mRNA levels of two YPT/rab genes in pea plants are repressed by light, with the process mediated by phytochrome. Here, we examined the mRNA expression and the location of the two proteins, pra2- and pra3-encoded proteins, using monoclonal antibodies. The pra2 and pra3 mRNA levels were highest in the stems of dark-grown seedlings. The corresponding proteins were found in the cytosol and the membranes of the stems. Most of the pra2 protein was in the growing internodes, especially in the growing region, but the pra3 protein was widespread. These results suggest that the pra2 protein is important for vesicular transport in stems, possibly contributing to stem growth in the dark, and that the pra3 protein is important for general vesicular transport. The amounts of pra2 and pra3 proteins decreased with illumination. The decrease in these proteins may be related to the phytochrome-dependent inhibition of stem growth that occurs in etiolated pea seedlings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feedback regulation of transcription from the low density lipoprotein (LDL) receptor gene is fundamentally important in the maintenance of intracellular sterol balance. The region of the LDL receptor promoter responsible for normal sterol regulation contains adjacent binding sites for the ubiquitous transcription factor Sp1 and the cholesterol-sensitive sterol regulatory element-binding proteins (SREBPs). Interestingly, both are essential for normal sterolmediated regulation of the promoter. The cooperation by Sp1 and SREBP-1 occurs at two steps in the activation process. SREBP-1 stimulates the binding of Sp1 to its adjacent recognition site in the promoter followed by enhanced stimulation of transcription after both proteins are bound to DNA. In the present report, we have defined the protein domains of Sp1 that are required for both synergistic DNA binding and transcriptional activation. The major activation domains of Sp1 that have previously been shown to be essential to activation of promoters containing multiple Sp1 sites are required for activation of the LDL receptor promoter. Additionally, the C domain is also crucial. This slightly acidic approximately 120-amino acid region is not required for efficient synergistic activation by multiple Sp1 sites or in combination with other recently characterized transcriptional regulators. We also show that Sp1 domain C is essential for full, enhanced DNA binding by SREBP-1. Taken together with other recent studies on the role of Sp1 in promoter activation, the current experiments suggest a unique combinatorial mechanism for promoter activation by two distinct transcription factors that are both essential to intracellular cholesterol homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

mac25, the subject of this report, was selected by the differential display of mRNA method in a search for genes overexpressed in senescent human mammary epithelial cells. mac25 had previously been cloned as a discrete gene, preferentially expressed in normal, leptomeningial cells compared with meningioma tumors. mac25 is another member of the insulin growth factor-binding protein (IGFBP) family. Insulin-like growth factors are potent mitogens for mammary epithelial cells, and the IGFBPs have been shown to modulate this mitogenic activity. We report here that mac25, unlike most IGFBPs, is down-regulated at the transcription level in mammary carcinoma cell lines, suggesting a tumor-suppressor role. The gene was mapped to chromosome 4q12. We found that mac25 accumulates in senescent cells and is up-regulated in normal, growing mammary epithelial cells by all-trans-retinoic acid or the synthetic retinoid fenretinide. These findings suggest that mac25 may be a downstream effector of retinoid chemoprevention in breast epithelial cells and that its tumor-suppressive role may involve a senescence pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plakoglobin interacts with both classical and desmosomal cadherins. It is closely related to Drosophila aramadillo (arm) gene product; arm acts in the wingless (wg)-signaling pathway to establish segment polarity. In Xenopus, homologs of wg--i.e., wnts, can produce anterior axis duplications by inducing dorsal mesoderm. Studies in Drosophila suggest that wnt acts by increasing the level of cytoplasmic armadillo protein (arm). To test whether simply increasing the level of plakoglobin mimics the effects of exogenous wnts in Xenopus, we injected fertilized eggs with RNA encoding an epitope-tagged form of plakoglobin; this induced both early radial gastrulation and anterior axis duplication. Exogenous plakoglobin accumulates in the nuclei of embryonic cells. Plakoglobin binds to the tail domain of the desmosomal cadherin desmoglein 1. When RNA encoding the tail domain of desmoglein was coinjected with plakoglobin RNA, both the dorsalizing effect and nuclear accumulation of plakoglobin were suppressed. Mutational analysis indicates that the central arm repeat region of plakoglobin is sufficient to induce axis duplication and that this polypeptide accumulates in the nuclei of embryonic cells. These data show that increased plakoglobin levels can, by themselves, generate the intracellular signals involved in the specification of dorsal mesoderm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The trimeric human single-stranded DNA-binding protein (HSSB; also called RP-A) plays an essential role in DNA replication, nucleotide excision repair, and homologous DNA recombination. The p34 subunit of HSSB is phosphorylated at the G1/S boundary of the cell cycle or upon exposure of cells to DNA damage-inducing agents including ionizing and UV radiation. We have previously shown that the phosphorylation of p34 is catalyzed by both cyclin-dependent kinase-cyclin A complex and DNA-dependent protein kinase. In this study, we investigated the effect of phosphorylation of p34 by these kinases on the replication and repair function of HSSB. We observed no significant difference with the unphosphorylated and phosphorylated forms of HSSB in the simian virus 40 DNA replication or nucleotide excision repair systems reconstituted with purified proteins. The phosphorylation status of the p34 subunit of HSSB was unchanged during the reactions. We suggest that the phosphorylated HSSB has no direct effect on the basic mechanism of DNA replication and nucleotide excision repair reactions in vitro, although we cannot exclude a role of p34 phosphorylation in modulating HSSB function in vivo through a yet poorly understood control pathway in the cellular response to DNA damage and replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Members of the IRF family mediate transcriptional responses to interferons (IFNs) and to virus infection. So far, proteins of this family have been studied only among mammalian species. Here we report the isolation of cDNA clones encoding two members of this family from chicken, interferon consensus sequence-binding protein (ICSBP) and IRF-1. The predicted chicken ICSBP and IRF-1 proteins show high levels of sequence similarity to their corresponding human and mouse counterparts. Sequence identities in the putative DNA-binding domains of chicken and human ICSBP and IRF-1 were 97% and 89%, respectively, whereas the C-terminal regions showed identities of 64% and 51%; sequence relationships with mouse ICSBP and IRF-1 are very similar. Chicken ICSBP was found to be expressed in several embryonic tissues, and both chicken IRF-1 and ICSBP were strongly induced in chicken fibroblasts by IFN treatment, supporting the involvement of these factors in IFN-regulated gene expression. The presence of proteins homologous to mammalian IRF family members, together with earlier observations on the occurrence of functionally homologous IFN-responsive elements in chicken and mammalian genes, highlights the conservation of transcriptional mechanisms in the IFN system, a finding that contrasts with the extensive sequence and functional divergence of the IFNs.