183 resultados para Immunofluorescence


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effects of environmental stresses on the subcellular localization of PKN were investigated in NIH 3T3, BALB/c 3T3, and Rat-1 cells. The immunofluorescence of PKN resided prominently in the cytoplasmic region in nonstressed cells. When these cells were treated at 42 degrees C, there was a time-dependent decrease of the immunofluorescence of PKN in the cytoplasmic region that correlated with an increase within the nucleus as observed by confocal microscope. After incubation at 37 degrees C following beat shock, the immunofluorescence of PKN returned to the perinuclear and cytoplasmic regions from the nucleus. The nuclear translocation of PKN by heat shock was supported by the biochemical subcellular fractionation and immunoblotting. The nuclear localization of PKN was also observed when the cells were exposed to other stresses such as sodium arsenite and serum starvation. These results raise the possibility that there is a pathway mediating stress signals from the cytosol to the nucleus through PKN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Centromere proteins are localized within the centromere-kinetochore complex, which can be proven by means of immunofluorescence microscopy and immunoelectron microscopy. In consequence, their putative functions seem to be related exclusively to mitosis, namely to the interaction of the chromosomal kinetochores with spindle microtubules. However, electron microscopy using immune sera enriched with specific antibodies against human centromere protein C (CENP-C) showed that it occurs not only in mitosis but during the whole cell cycle. Therefore, we investigated the cell cycle-specific expression of CENP-C systematically on protein and mRNA levels applying HeLa cells synchronized in all cell cycle phases. Immunoblotting confirmed protein expression during the whole cell cycle and revealed an increase of CENP-C from the S phase through the G2 phase and mitosis to highest abundance in the G1 phase. Since this was rather surprising, we verified it by quantifying phase-specific mRNA levels of CENP-C, paralleled by the amplification of suitable internal standards, using the polymerase chain reaction. The results were in excellent agreement with abundant protein amounts and confirmed the cyclic behavior of CENP-C during the cell cycle. In consequence, we postulate that in addition to its role in mitosis, CENP-C has a further role in the G1 phase that may be related to cell cycle control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During receptor mediated endocytosis, at least a fraction of recycling cargo typically accumulates in a pericentriolar cluster of tubules and vesicles. However, it is not clear if these endosomal structures are biochemically distinct from the early endosomes from which they are derived. To better characterize this pericentriolar endosome population, we determined the distribution of two endogenous proteins known to be functionally involved in receptor recycling [Rab4, cellubrevin (Cbvn)] relative to the distribution of a recycling ligand [transferrin (Tfn)] as it traversed the endocytic pathway. Shortly after internalization, Tfn entered a population of early endosomes that contained both Rab4 and Cbvn, demonstrated by triple label immunofluorescence confocal microscopy. Tfn then accumulated in the pericentriolar cluster of recycling vesicles (RVs). However, although these pericentriolar endosomes contained Cbvn, they were strikingly depleted of Rab4. The ability of internalized Tfn to reach the Rab4-negative population was not blocked by nocodazole, although the characteristic pericentriolar location of the population was not maintained in the absence of microtubules. Similarly, Rab4-positive and -negative populations remained distinct in cells treated with brefeldin A, with only Rab4-positive elements exhibiting the extended tubular morphology induced by the drug. Thus, at least with respect to Rab4 distribution, the pathway of Tfn receptor recycling consists of at least two biochemically and functionally distinct populations of endosomes, a Rab4-positive population of early endosomes to which incoming Tfn is initially delivered and a Rab4-negative population of recycling vesicles that transiently accumulates Tfn on its route back to the plasma membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A constitutively active form of fibroblast growth factor 2 (FGFR2) was identified in rat osteosarcoma (ROS) cells by an expression cloning strategy. Unlike other tyrosine kinase receptors activated by N-terminal truncation in tumors, this receptor, FGFR2-ROS, contains an altered C terminus generated from chromosomal rearrangement with a novel gene, designated FGFR activating gene 1 (FRAG1). While the removal of the C terminus slightly activates FGFR2, the presence of the FRAG1 sequence drastically stimulates the transforming activity and autophosphorylation of the receptor. FGFR2-ROS is expressed as a unusually large protein and is highly phosphorylated in NIH 3T3 transfectants. FRAG1 is ubiquitously expressed and encodes a predicted protein of 28 kDa lacking significant structural similarity to known proteins. Epitope-tagged FRAG1 protein showed a perinuclear localization by immunofluorescence staining. The highly activated state of FGFR2-ROS appears to be attributed to constitutive dimer formation and higher phosphorylation level as well as possibly altered subcellular localization. These results indicate a unique mechanism of receptor activation by a C terminus alteration through a chromosomal fusion with FRAG1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocular albinism type 1 (OA1) is an inherited disorder characterized by severe reduction of visual acuity, photophobia, and retinal hypopigmentation. Ultrastructural examination of skin melanocytes and of the retinal pigment epithelium reveals the presence of macromelanosomes, suggesting a defect in melanosome biogenesis. The gene responsible for OA1 is exclusively expressed in pigment cells and encodes a predicted protein of 404 aa displaying several putative transmembrane domains and sharing no similarities with previously identified molecules. Using polyclonal antibodies we have identified the endogenous OA1 protein in retinal pigment epithelial cells, in normal human melanocytes and in various melanoma cell lines. Two forms of the OA1 protein were identified by Western analysis, a 60-kDa glycoprotein and a doublet of 48 and 45 kDa probably corresponding to unglycosylated precursor polypeptides. Upon subcellular fractionation and phase separation with the nonionic detergent Triton X-114, the OA1 protein segregated into the melanosome-rich fraction and behaved as an authentic integral membrane protein. Immunofluorescence and immunogold analyses on normal human melanocytes confirmed the melanosomal membrane localization of the endogenous OA1 protein, consistent with its possible involvement in melanosome biogenesis. The identification of a novel melanosomal membrane protein involved in a human disease will provide insights into the mechanisms that control the cell-specific pathways of subcellular morphogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have determined the effects of tropomodulin (Tmod), talin, vinculin, and alpha-actinin on ligament fibroblast adhesion. The anterior cruciate ligament (ACL), which lacks a functional healing response, and the medial collateral ligament (MCL), a functionally healing ligament, were selected for this study. The micropipette aspiration technique was used to determine the forces needed to separate ACL and MCL cells from a fibronectin-coated surface. Delivery of exogenous tropomodulin, an actin-filament capping protein, into MCL fibroblasts significantly increased adhesion, whereas its monoclonal antibody (mAb) significantly decreased cell adhesiveness. However, for ACL fibroblasts, Tmod significantly reduced adhesion, whereas its mAb had no effect. mAbs to talin, vinculin, and alpha-actinin significantly decreased the adhesion of both ACL and MCL cells with increasing concentrations of antibody, and also reduced stress fiber formation and cell spreading rate as revealed by immunofluorescence microscopy. Disruption of actin filament and microtubule assembly with cytochalasin D and colchicine, respectively, also significantly reduced adhesion in ACL and MCL cells. In conclusion, both ACL and MCL fibroblast adhesion depends on cytoskeletal assembly; however, this dependence differs between ACL and MCL fibroblasts in many ways, especially in the role of Tmod. These results add yet another possible factor in explaining the clinical differences in healing between the ACL and the MCL.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of ischemia on the maturation of secretory proteins are not well understood. Among several events that occur during ischemia-reperfusion are a rapid and extensive decrease in ATP levels and an alteration of cellular oxidative state. Since the normal folding and assembly of secretory proteins are mediated by endoplasmic reticulum (ER) molecular chaperones, the function of which depends on ATP and maintenance of an appropriate redox environment, ischemia might be expected to perturb folding of secretory proteins. In this study, whole animal and cultured cell models for the epithelial ischemic state were used to examine this possibility. After acute kidney ischemia, marked increases in the mRNA levels of the ER chaperones glucose-regulated protein (grp)78/immunoglobulin-binding protein (BiP), grp94, and ER protein (ERp)72 were noted. Likewise, when cellular ATP was depleted to less than 10% of control with antimycin A, mRNA levels of BiP, ERp72, and grp94 were increased in kidney and thyroid epithelial cell culture models. Since the signal for the up-regulation of these stress proteins is believed to be the accumulation of misfolded/misassembled secretory proteins in the ER, their induction after ischemia in vivo and antimycin treatment of cultured cells suggests that maturation of secretory proteins in the ER lumen might indeed be perturbed. To analyze the effects of antimycin A on the maturation of secretory proteins, we studied the fate of thyroglobulin (Tg), a large oligomeric secretory glycoprotein, the folding and assembly of which seems to require a variety of ER chaperones. Treatment of cultured thyroid epithelial cells with antimycin A greatly inhibited ( > 90%) the secretion of Tg. Sucrose density gradient analysis revealed that in antimycin A-treated cells Tg associates into large macromolecular complexes which, by immunofluorescence, appeared to localize to the ER. Furthermore, coimmunoprecipitation studies after antimycin A treatment demonstrated that Tg stably associates with BiP, grp94, and ERp72. Together, our results suggest that a key cellular lesion in ischemia is the misfolding of secretory proteins as they transit the ER, and this leads not only to increased expression of ER chaperones but also to their stable association with and the subsequent retention of at least some misfolded secretory proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We used novel immunofluorescence strategies to demonstrate that outer surface proteins (Osps) A, B and C of Borrelia burgdorferi have limited surface exposure, finding that contradicts the prevailing viewpoint that these antigens are exclusively surface exposed. Light labeling was observed when antibodies to OspA or OspB were added to motile organisms, whereas intense fluorescence was observed when the same slides were methanol-fixed and reprobed. Modest labeling also was observed when spirochetes encapsulated in agarose beads (gel microdroplets) were incubated with antibodies to these same two antigens. This contrasted with the intense fluorescence observed when encapsulated spirochetes were probed in the presence of 0.06% Triton X-100, which selectively removed outer membranes. Proteinase K (PK) treatment of encapsulated spirochetes abrogated surface labeling. However, PK-treated spirochetes fluoresced intensely after incubation with antibodies to OspA or OspB in the presence of detergent, confirming the existence of large amounts of subsurface Osp antigens. Modest surface labeling once again was detected when PK-treated spirochetes were reprobed after overnight incubation, a result consistent with the existence of a postulated secretory apparatus that shuttles lipoproteins to the borrelial surface. Last, experiments with the OspC-expressing B. burgdorferi strain 297 revealed that this antigen was barely detectable on spirochetal surfaces even though it was a major constituent of isolated outer mem- branes. We propose a model of B. burgdorferi molecular architecture that helps to explain spirochetal persistence during chronic Lyme disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microglial cells, the resident macrophages of the brain, play an important role in the neuropathogenesis of human immunodeficiency virus type 1 (HIV-1), and recent studies suggest that opioid peptides regulate the function of macrophages from somatic tissues. We report herein the presence of kappa opioid receptors (KORs) in human fetal microglia and inhibition of HIV-1 expression in acutely infected microglial cell cultures treated with KOR ligands. Using reverse transcriptase-polymerase chain reaction and sequencing analyses, we found that mRNA for the KOR was constitutively expressed in microglia and determined that the nucleotide sequence of the open reading frame was identical to that of the human brain KOR gene. The expression of KOR in microglial cells was confirmed by membrane binding of [3H]U69,593, a kappa-selective ligand, and by indirect immunofluorescence. Treatment of microglial cell cultures with U50,488 or U69,593 resulted in a dose-dependent inhibition of expression of the monocytotropic HIV-1 SF162 strain. This antiviral effect of the kappa ligands was blocked by the specific KOR antagonist, nor-binaltrophimine. These findings suggest that kappa opioid agonists have immunomodulatory activity in the brain, and that these compounds could have potential in the treatment of HIV-1-associated encephalopathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

IA-2 is a 105,847 Da transmembrane protein that belongs to the protein tyrosine phosphatase family. Immunoperoxidase staining with antibody raised against IA-2 showed that this protein is expressed in human pancreatic islet cells. In this study, we expressed the full-length cDNA clone of IA-2 in a rabbit reticulocyte transcription/translation system and used the recombinant radiolabeled IA-2 protein to detect autoantibodies by immunoprecipitation. Coded sera (100) were tested: 50 from patients with newly diagnosed insulin-dependent diabetes mellitus (IDDM) and 50 from age-matched normal controls. Sixty-six percent of the sera from patients, but none of the sera from controls, reacted with IA-2. The same diabetic sera tested for autoantibodies to islet cells (ICA) by indirect immunofluorescence and glutamic acid decarboxylase (GAD65Ab) by depletion ELISA showed 68% and 52% positivity, respectively. Up to 86% of the IDDM patients had autoantibodies to IA-2 and/or GAD65. Moreover, greater than 90% (14 of 15) of the ICA-positive but GAD65Ab-negative sera had autoantibodies to IA-2. Absorption experiments showed that the immunofluorescence reactivity of ICA-positive sera was greatly reduced by prior incubation with recombinant IA-2 or GAD65 when the respective antibody was present. A little over one-half (9 of 16) of the IDDM sera that were negative for ICA were found to be positive for autoantibodies to IA-2 and/or GAD65, arguing that the immunofluorescence test for ICA is less sensitive than the recombinant tests for autoantibodies to IA-2 and GAD65. It is concluded that IA-2 is a major islet cell autoantigen in IDDM, and, together with GAD65, is responsible for much of the reactivity of ICA with pancreatic islets. Tests for the detection of autoantibodies to recombinant IA-2 and GAD65 may eventually replace ICA immunofluorescence for IDDM population screening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rab8 is a small GTP-binding protein that plays a role in vesicular transport from the trans-Golgi network to the basolateral plasma membrane in polarized epithelial cells (MDCK), and to the dendritic surface in hippocampal neurons. As is the case for most other rab proteins, the precise molecular interactions by which rab8 carries out its function remain to be elucidated. Here we report the identification and the complete cDNA-derived amino acid sequence of a murine rab8-interacting protein (rab8ip) that specifically interacts with rab8 in a GTP-dependent manner. Rab8ip displays 93% identity with the GC kinase, a serine/threonine protein kinase recently identified in human lymphoid tissue that is activated in the stress response. Like the GC kinase, rab8ip has protein kinase activity manifested by autophosphorylation and phosphorylation of the classical serine/threonine protein kinase substrates, myelin basic protein and casein. When coexpressed in transfected 293T cells, rab8 and the rab8ip/GC kinase formed a complex that could be recovered by immunoprecipitation with antibodies to rab8. Cell fractionation and immunofluorescence analyses indicate that in MDCK cells endogenous rab8ip is present both in the cytosol and as a peripheral membrane protein concentrated in the Golgi region and basolateral plasma membrane domains, sites where rab8 itself is also located. In light of recent evidence that rab proteins may act by promoting the stabilization of SNARE complexes, the specific GTP-dependent association of rab8 with the rab8ip/GC kinase raises the possibility that rab-regulated protein phosphorylation is important for vesicle targeting or fusion. Moreover, the rab8ip/GC kinase may serve to modulate secretion in response to stress stimuli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have molecularly cloned a cDNA encoding a protein uniquely expressed and hyperphosphorylated at tyrosine residues in a Ki-1 lymphoma cell that contained chromosomal translocation t(2;5). The encoded protein p80 was shown to be generated by fusion of a protein-tyrosine kinase and a nucleolar protein B23/nucleophosmin (NPM). The coding sequence of this cDNA turned out to be virtually identical to that of the fusion cDNA for NPM-anaplastic lymphoma kinase (ALK) previously cloned from the transcript of the gene at the breakpoint of the same translocation. Overexpression of p80 in NIH 3T3 cells induced neoplastic transformation, suggesting that the p80 kinase is aberrantly activated. The normal form of p80 was predicted to be a receptor-type tyrosine kinase on the basis of its sequence similarity to the insulin receptor family of kinases. However, an immunofluorescence study using COS cells revealed that p80 was localized to the cytoplasm. Thus, subcellular translocation and activation of the tyrosine kinase presumably by its structural alteration would cause the malignant transformation. We also showed that a mutant p80 lacking the NPM portion was unable to transform NIH 3T3 cells. Thus, the NPM sequence is essential for the transforming activity, suggesting that the chromosomal translocation is responsible for the oncogenesis. Finally, Shc and insulin receptor substrate 1 (IRS-1) were tyrosine-phosphorylated and bound to p80 in p80-transformed cells. However, mutants of p80 that were defective for binding to and phosphorylation of Shc and insulin receptor substrate 1 could transform NIH 3T3 cells. Association of these mutants with GRB2 was still observed, suggesting that interaction of p80 with GRB2 but not with Shc or IRS-1 was relevant for cell transformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many resident membrane proteins of the endoplasmic reticulum (ER) do not have known retrieval sequences. Among these are the so-called tail-anchored proteins, which are bound to membranes by a hydrophobic tail close to the C terminus and have most of their sequence as a cytosolically exposed N-terminal domain. Because ER tail-anchored proteins generally have short (< or = 17 residues) hydrophobic domains, we tested whether this feature is important for localization, using cytochrome b5 as a model. The hydrophobic domain of cytochrome b5 was lengthened by insertion of five amino acids (ILAAV), and the localization of the mutant was analyzed by immunofluorescence in transiently transfected mammalian cells. While the wild-type cytochrome was localized to the ER, the mutant was relocated to the surface. This relocation was not due to the specific sequence introduced, as demonstrated by the ER localization of a second mutant, in which the original length of the membrane anchor was restored, while maintaining the inserted ILAAV sequence. Experiments with brefeldin A and with cycloheximide demonstrated that the extended anchor mutant reached the plasma membrane by transport along the secretory pathway. We conclude that the short membrane anchor of cytochrome b5 is important for its ER residency, and we discuss the relevance of this finding for other ER tail-anchored proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nerve growth factor (NGF) is well characterized for its neurotrophic actions on peripheral sensory and sympathetic neurons and on central cholinergic neurons of the basal forebrain. Recent evidence, however, has shown high levels of NGF to be present in a variety of biological fluids after inflammatory and autoimmune responses, suggesting that NGF is a mediator of immune interactions. Increased NGF serum levels have been reported in both humans and experimental animal models of psychological and physical stress, thus implicating NGF in neuroendocrine interactions as well. The possible source(s) and the regulatory mechanisms involved in the control of serum NGF levels, however, still remain to be elucidated. We now report the presence of both NGF gene transcripts and protein in the anterior pituitary. Immunofluorescence analysis indicated that hypophysial NGF is selectively localized in mammotroph cells and stored in secretory granules. NGF is cosecreted with prolactin from mammotroph cells by a neurotransmitter-dependent mechanism that can be pharmacologically regulated. Activation of the dopamine D2 receptor subtype, which physiologically controls prolactin release, resulted in a complete inhibition of vasoactive intestinal peptide-stimulated NGF secretion in vitro, whereas the specific D2 antagonist (-)-sulpiride stimulated NGF secretion in vivo, suggesting that the anterior pituitary is a possible source of circulating NGF. Given the increased NGF serum levels in stressful conditions and the newly recognized immunoregulatory function of this protein, NGF, together with prolactin, may thus be envisaged as an immunological alerting signal under neuronal control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genetic study of RNA viruses is greatly facilitated by the availability of infectious cDNA clones. However, their construction has often been difficult. While exploring ways to simplify the construction of infectious clones, we have successfully modified and applied the newly described technique of "long PCR" to the synthesis of a full-length DNA amplicon from the RNA of a cytopathogenic mutant (HM 175/24a) of the hepatitis A virus (HAV). Primers were synthesized to match the two extremities of the HAV genome. The antisense primer, homologous to the 3' end, was used in both the reverse transcription (RT) and the PCR steps. With these primers we reproducibly obtained a full-length amplicon of approximately 7.5 kb. Further, since we engineered a T7 promoter in the sense primer, RNA could be transcribed directly from the amplicon with T7 RNA polymerase. Following transfection of cultured fetal rhesus kidney cells with the transcription mixture containing both the HAV cDNA and the transcribed RNA, replicating HAV was detected by immunofluorescence microscopy and, following passage to other cell cultures, by focus formation. The recovered virus displayed the cytopathic effect and large plaque phenotype typical of the original virus; this result highlights the fidelity of the modified long reverse transcription-PCR procedure and demonstrates the potential of this method for providing cDNAs of viral genomes and simplifying the construction of infectious clones.