178 resultados para DEAD Box Protein 20


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rap phosphatases are a recently discovered family of protein aspartate phosphatases that dephosphorylate the Spo0F--P intermediate of the phosphorelay, thus preventing sporulation of Bacillus subtilis. They are regulators induced by physiological processes that are antithetical to sporulation. The RapA phosphatase is induced by the ComP-ComA two-component signal transduction system responsible for initiating competence. RapA phosphatase activity was found to be controlled by a small protein, PhrA, encoded on the same transcript as RapA. PhrA resembles secreted proteins and the evidence suggests that it is cleaved by signal peptidase I and a 19-residue C-terminal domain is secreted from the cell. The sporulation deficiency caused by the uncontrolled RapA activity of a phrA mutant can be complemented by synthetic peptides comprising the last six or more of the C-terminal residues of PhrA. Whether the peptide controls RapA activity directly or by regulating its synthesis remains to be determined. Complementation of the phrA mutant can also be obtained in mixed cultures with a wild-type strain, suggesting the peptide may serve as a means of communication between cells. Importation of the secreted peptide required the oligopeptide transport system. The sporulation deficiency of oligopeptide transport mutants can be suppressed by mutating the rapA and rapB genes or by introduction of a spo0F mutation Y13S that renders the protein insensitive to Rap phosphatases. The data indicate that the sporulation deficiency of oligopeptide transport mutants is due to their inability to import the peptides controlling Rap phosphatases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neural pathways within the hippocampus undergo use-dependent changes in synaptic efficacy, and these changes are mediated by a number of signaling mechanisms, including cAMP-dependent protein kinase (PKA). The PKA holoenzyme is composed of regulatory and catalytic (C) subunits, both of which exist as multiple isoforms. There are two C subunit genes in mice, Calpha and Cbeta, and the Cbeta gene gives rise to several splice variants that are specifically expressed in discrete regions of the brain. We have used homologous recombination in embryonic stem cells to introduce an inactivating mutation into the mouse Cbeta gene, specifically targeting the Cbeta1-subunit isoform. Homozygous mutants showed normal viability and no obvious pathological defects, despite a complete lack of Cbeta1. The mice were analyzed in electrophysiological paradigms to test the role of this isoform in long-term modulation of synaptic transmission in the Schaffer collateral-CA1 pathway of the hippocampus. A high-frequency stimulus produced potentiation in both wild-type and Cbeta1-/- mice, but the mutants were unable to maintain the potentiated response, resulting in a late phase of long-term potentiation that was only 30% of controls. Paired pulse facilitation was unaffected in the mutant mice. Low-frequency stimulation produced long-term depression and depotentiation in wild-type mice but failed to produce lasting synaptic depression in the Cbeta1 -/- mutants. These data provide direct genetic evidence that PKA, and more specifically the Cbeta1 isoform, is required for long-term depression and depotentiation, as well as the late phase of long-term potentiation in the Schaffer collateral-CA1 pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A key event in Ras-mediated signal transduction and transformation involves Ras interaction with its downstream effector targets. Although substantial evidence has established that the Raf-1 serine/threonine kinase is a critical effector of Ras function, there is increasing evidence that Ras function is mediated through interaction with multiple effectors to trigger Raf-independent signaling pathways. In addition to the two Ras GTPase activating proteins (GAPs; p120- and NF1-GAP), other candidate effectors include activators of the Ras-related Ral proteins (RalGDS and RGL) and phosphatidylinositol 3-kinase. Interaction between Ras and its effectors requires an intact Ras effector domain and involves preferential recognition of active Ras-GTP. Surprisingly, these functionally diverse effectors lack significant sequence homology and no consensus Ras binding sequence has been described. We have now identified a consensus Ras binding sequence shared among a subset of Ras effectors. We have also shown that peptides containing this sequence from Raf-1 (RKTFLKLA) and NF1-GAP (RRFFLDIA) block NF1-GAP stimulation of Ras GTPase activity and Ras-mediated activation of mitogen-activated protein kinases. In summary, the identification of a consensus Ras-GTP binding sequence establishes a structural basis for the ability of diverse effector proteins to interact with Ras-GTP. Furthermore, our demonstration that peptides that contain Ras-GTP binding sequences can block Ras function provides a step toward the development of anti-Ras agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute promyelocytic leukemia (APL) has been ascribed to a chromosomal translocation event which results in a fusion protein comprising the PML protein and retinoic acid receptor alpha. PML is normally a component of a nuclear multiprotein complex which is disrupted in the APL disease state. Here, two newly defined cysteine/histidine-rich protein motifs called the B-box (B1 and B2) from PML have been characterized in terms of their effect on PML nuclear body formation, their dimerization, and their biophysical properties. We have shown that both peptides bind Zn2+, which induces changes in the peptides' structures. We demonstrate that mutants in both B1 and B2 do not form PML nuclear bodies in vivo and have a phenotype that is different from that observed in the APL disease state. Interestingly, these mutations do not affect the ability of wild-type PML to dimerize with mutant proteins in vitro, suggesting that the B1 and B2 domains are involved in an additional interaction central to PML nuclear body formation. This report in conjunction with our previous work demonstrates that the PML RING-Bl/B2 motif plays a fundamental role in formation of a large multiprotein complex, a function that may be common to those unrelated proteins which contain the motif.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patients with the M4Eo subtype of acute myeloid leukemia almost invariably are found to have an inversion of chromosome 16 in their leukemic cells, which results in a gene fusion between the transcription factor called core binding factor beta (CBFbeta) on 16q and a smooth muscle myosin heavy chain (SMMHC) gene on 16p. Subcellular localizations of the wild-type CBFbeta and the CBFbeta-SMMHC fusion protein were determined by immunofluorescence of NIH 3T3 cells that overexpress wild-type or fusion protein. Normal CBFbeta showed an unexpected perinuclear pattern consistent with primary localization in the Golgi complex. The CBFbeta-SMMHC fusion protein had a very different pattern. Nuclear staining included rod-like crystalline structures as long as 11 microm. The heterodimeric partner of CBFbeta, CBFalpha, formed part of this complex. Cytoplasmic staining included stress fibers that colocalized with actin, probably as a consequence of the myosin heavy chain component of the fusion protein. Deletion of different regions of the CBFbeta portion of the fusion protein showed that binding to CBFalpha was not required for nuclear translocation. However, deletion of parts of the SMMHC domain of the fusion protein involved in myosin-mediated filament formation resulted in proteins that did not form rod-like structures. These observations confirm previous indirect evidence that the CBFbeta-SMMHC fusion protein is capable of forming macromolecular nuclear aggregates and suggests possible models for the mechanism of leukemic transformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evasion of host immunity by Toxocara canis infective larvae is mediated by the nematode surface coat, which is shed in response to binding by host antibody molecules or effector cells. The major constituent of the coat is the TES-120 glycoprotein series. We have isolated a 730-bp cDNA from the gene encoding the apoprotein precursor of TES-120. The mRNA is absent from T. canis adults but hyperabundant in larvae, making up approximately 10% of total mRNA, and is trans-spliced with the nematode 5' leader sequence SL1. It encodes a 15.8-kDa protein (after signal peptide removal) containing a typical mucin domain: 86 amino acid residues, 72.1% of which are Ser or Thr, organized into an array of heptameric repeats, interspersed with proline residues. At the C-terminal end of the putative protein are two 36-amino acid repeats containing six Cys residues, in a motif that can also be identified in several genes in Caenorhabditis elegans. Although TES-120 displays size and charge heterogeneity, there is a single copy gene and a homogeneous size of mRNA. The association of overexpression of some membrane-associated mucins with immunosuppression and tumor metastasis suggests a possible model for the role of the surface coat in immune evasion by parasitic nematodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 145-kDa tyrosine-phosphorylated protein that becomes associated with Shc in response to multiple cytokines has been purified from the murine hemopoietic cell line B6SUtA1. Amino acid sequence data were used to clone the cDNA encoding this protein from a B6SUtA1 library. The predicted amino acid sequence encodes a unique protein containing an N-terminal src homology 2 domain, two consensus sequences that are targets for phosphotyrosine binding domains, a proline-rich region, and two motifs highly conserved among inositol polyphosphate 5-phosphatases. Cell lysates immunoprecipitated with antiserum to this protein exhibited both phosphatidylinositol 3,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate polyphosphate 5-phosphatase activity. This novel signal transduction intermediate may serve to modulate both Ras and inositol signaling pathways. Based on its properties, we suggest the 145-kDa protein be called SHIP for SH2-containing inositol phosphatase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Alzheimer disease 40-residue amyloid beta protein (AbetaP[1-40]) forms cation-selective channels across acidic phospholipid bilayer membranes with spontaneous transitions over a wide range of conductances ranging from 40 to 4000 pS. Zn2+ has been reported to bind to AbetaP[1-40] with high affinity, and it has been implicated in the formation of amyloid plaques. We now report the functional consequences of such Zn2+ binding for the AbetaP[1-40] channel. Provided the AbetaP[1-40] channel is expressed in the low conductance (<400 pS) mode, Zn2+ blocks the open channel in a dose- dependent manner. For AbetaP[1-40] channels in the giant conductance mode (>400 pS), Zn2+ doses in the millimolar range were required to exert substantial blockade. The Zn2+ chelator o-phenanthroline reverses the blockade. We also found that Zn2+ modulates AbetaP[1-40] channel gating and conductance only from one side of the channel. These data are consistent with predictions of our recent molecular modeling studies on AbetaP[1-40] channels indicating asymmetric Zn(2+)-AbetaP[1-40] interactions at the entrance to the pore.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regulation of ion channel function by intracellular processes is fundamental for controlling synaptic signaling and integration in the nervous system. Currents mediated by N-methyl-D-aspartate (NMDA) receptors decline during whole-cell recordings and this may be prevented by ATP. We show here that phosphorylation is necessary to maintain NMDA currents and that the decline is not dependent upon Ca2+. A protein tyrosine phosphatase or a peptide inhibitor of protein tyrosine kinase applied intracellularly caused a decrease in NMDA currents even when ATP was included. On the other hand, pretreating the neurons with a membrane-permeant tyrosine kinase inhibitor occluded the decline in NMDA currents when ATP was omitted. In inside-out patches, applying a protein tyrosine phosphatase to the cytoplasmic face of the patch caused a decrease in probability of opening of NMDA channels. Conversely, open probability was increased by a protein tyrosine phosphatase inhibitor. These results indicate that NMDA channel activity is reduced by a protein tyrosine phosphatase associated with the channel complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of recombinantly produced ob protein were compared to those of food restriction in normal lean and genetically obese mice. Ob protein infusion into ob/ob mice resulted in large decreases in body and fat-depot weight and food intake that persisted throughout the study. Smaller decreases in body and fat-depot weights were observed in vehicle-treated ob/ob mice that were fed the same amount of food as that consumed by ob protein-treated ob/ob mice (pair feeding). In lean mice, ob protein infusion significantly decreased body and fat-depot weights, while decreasing food intake to a much lesser extent than in ob/ob mice. Pair feeding of lean vehicle-treated mice to the intake of ob protein-treated mice did not reduce body fat-depot weights. The potent weight-, adipose-, and appetite-reducing effects exerted by the ob protein in ob protein-deficient mice (ob/ob) confirm hypotheses generated from early parabiotic studies that suggested the existence of a circulating satiety factor of adipose origin. Pair-feeding studies provide compelling evidence that the ob protein exerts adipose-reducing effects in excess of those induced by reductions in food intake.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report compressibility data on single-domain, globular proteins which suggest a general relationship between protein conformational transitions and delta kzeroS, the change in the partial specific adiabatic compressibility which accompanies the transition. Specifically, we find transitions between native and compact intermediate states to be accompanied by small increases in kzeroS of +(1-4) x 10(-6) cm3.g-1.bar-1 (1 bar = 100 kPa). By contrast, transitions between native and partially unfolded states are accompanied by small decreases in kzeroS of -(3-7) x 10(-6) cm3.g-1.bar-1, while native-to-fully unfolded transitions result in large decreases in kzeroS of -(18-20) x 10(-6) cm3.g-1.bar-1. Thus, for the single-domain, globular proteins studied here, changes in kzeroS correlate with the type of transition being monitored, independent of the specific protein. Consequently, kzeroS measurements may provide a convenient approach for detecting the existence of and for defining the nature of protein transitions, while also characterizing the hydration properties of individual protein states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolutionarily conserved Krüppel-associated box (KRAB) is present in the N-terminal regions of more than one-third of all Krüppel-class zinc finger proteins. Recent experiments have demonstrated that the KRAB-A domain tethered to a promoter DNA by connecting to heterologous DNA-binding protein domain or targeted to a promoter-proximal RNA sequence acts as a transcriptional silencing of RNA polymerase II promoters. Here we show that expression of KRAB domain suppresses in vivo the activating function of various defined activating transcription factors, and we demonstrate that the KRAB domain specifically silences the activity of promoters whose initiation is dependent on the presence of a TATA box. Promoters whose accurate transcription initiation is directed by a pyrimidine-rich initiator element, however, are relatively unaffected. We also report in vitro transcription experiments indicating that the KRAB domain is able to repress both activated and basal promoter activity. Thus, the KRAB domain appears to repress the activity of certain promoters through direct communication with TATA box-dependent basal transcription machinery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A capillary electrophoresis method has been developed to study DNA-protein complexes by mobility-shift assay. This method is at least 100 times more sensitive than conventional gel mobility-shift procedures. Key features of the technique include the use of a neutral coated capillary, a small amount of linear polymer in the separation medium, and use of covalently dye-labeled DNA probes that can be detected with a commercially available laser-induced fluorescence monitor. The capillary method provides quantitative data in runs requiring < 20 min, from which dissociation constants are readily determined. As a test case we studied interactions of a developmentally important sea urchin embryo transcription factor, SpP3A2. As little as 2-10 x 10(6) molecules of specific SpP3A2-oligonucleotide complex were reproducibly detected, using recombinant SpP3A2, crude nuclear extract, egg lysates, and even a single sea urchin egg lysed within the capillary column.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ADP-ribosylation factors (ARFs) are 20-kDa guanine nucleotide-binding proteins and are active in the GTP-bound state and inactive with GDP bound. ARF-GTP has a critical role in vesicular transport in several cellular compartments. Conversion of ARF-GDP to ARF-GTP is promoted by a guanine nucleotide-exchange protein (GEP). We earlier reported the isolation from bovine brain cytosol of a 700-kDa protein complex containing GEP activity that was inhibited by brefeldin A (BFA). Partial purification yielded an approximately 60-kDa BFA-insensitive GEP that enhanced binding of ARF1 and ARF3 to Golgi membranes. GEP has now been purified extensively from rat spleen cytosol in a BFA-insensitive, approximately 55-kDa form. It activated class I ARFs (ARFs 1 and 3) that were N-terminally myristoylated, but not nonmyristoylated ARFs from class-I, II, or III. GEP activity required MgCl2. In the presence of 0.6-0.8 mM MgCl2 and 1 mM EDTA, binding of guanosine 5'-[gamma[35S]thio]triphosphate ([35S]GTP gamma S) by ARF1 and ARF3 was equally high without and with GEP. At higher Mg2+ concentrations, binding without GEP was much lower; with 2-5 mM MgCl2, GEP-stimulated binding was maximal. The rate of GDP binding was much less than that of GTP gamma S with and without GEP. Phospholipids were necessary for GEP activity; phosphatidylinositol was more effective than phosphatidylserine, and phosphatidic acid was less so. Other phospholipids tested were ineffective. Maximal effects required approximately 200 microM phospholipid, with half-maximal activation at 15-20 microM. Release of bound [35S]GTP gamma S from ARF3 required the presence of both GEP and unlabeled GTP or GTP gamma S; GDP was much less effective. This characterization of the striking effects of Mg2+ concentration and specific phospholipids on the purified BFA-insensitive ARF GEP should facilitate experiments to define its function in vesicular transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bacterial cell division protein FtsZ is a homolog of tubulin, but it has not been determined whether FtsZ polymers are structurally related to the microtubule lattice. In the present study, we have obtained high-resolution electron micrographs of two FtsZ polymers that show remarkable similarity to tubulin polymers. The first is a two-dimensional sheet of protofilaments with a lattice very similar to that of the microtubule wall. The second is a miniring, consisting of a single protofilament in a sharply curved, planar conformation. FtsZ minirings are very similar to tubulin rings that are formed upon disassembly of microtubules but are about half the diameter. This suggests that the curved conformation occurs at every FtsZ subunit, but in tubulin rings the conformation occurs at either beta- or alpha-tubulin subunits but not both. We conclude that the functional polymer of FtsZ in bacterial cell division is a long thin sheet of protofilaments. There is sufficient FtsZ in Escherichia coli to form a protofilament that encircles the cell 20 times. The similarity of polymers formed by FtsZ and tubulin implies that the protofilament sheet is an ancient cytoskeletal system, originally functioning in bacterial cell division and later modified to make microtubules.