329 resultados para Coding articles
Resumo:
Different truncated and conformationally constrained analogs of corticotropin-releasing factor (CRF) were synthesized on the basis of the amino acid sequences of human/rat CRF (h/rCRF), ovine CRF (oCRF), rat urocortin (rUcn), or sauvagine (Svg) and tested for their ability to displace [125I-Tyr0]oCRF or [125I-Tyr0]Svg from membrane homogenates of human embryonic kidney (HEK) 293 cells stably transfected with cDNA coding for rat CRF receptor, type 1 (rCRFR1), or mouse CRF receptor, type 2β (mCRFR2β). Furthermore, the potency of CRF antagonists to inhibit oCRF- or Svg-stimulated cAMP production of transfected HEK 293 cells expressing either rCRFR1 (HEK-rCRFR1 cells) or mCRFR2β (HEK-mCRFR2β cells) was determined. In comparison with astressin, which exhibited a similar affinity to rCRFR1 (Kd = 5.7 ± 1.6 nM) and mCRFR2β (Kd = 4.0 ± 2.3 nM), [dPhe11,His12]Svg(11–40), [dLeu11]Svg(11–40), [dPhe11]Svg(11–40), and Svg(11–40) bound, respectively, with a 110-, 80-, 68-, and 54-fold higher affinity to mCRFR2β than to rCRFR1. The truncated analogs of rUcn displayed modest preference (2- to 7-fold) for binding to mCRFR2β. In agreement with the results of these binding experiments, [dPhe11,His12]Svg(11–40), named antisauvagine-30, was the most potent and selective ligand to suppress agonist-induced adenylate cyclase activity in HEK cells expressing mCRFR2β.
Resumo:
To identify genes involved in macrophage development, we used the differential display technique and compared the gene expression profiles for human myeloid HL-60 leukemia cell lines susceptible and resistant to macrophage maturation. We identified a gene coding for a protein kinase, protein kinase X (PRKX), which was expressed in the maturation-susceptible, but not in the resistant, cell line. The expression of the PRKX gene was found to be induced during monocyte, macrophage, and granulocyte maturation of HL-60 cells. We also studied the expression of the PRKX gene in 12 different human tissues and transformed cell lines and found that, among these tissues and cell types, the PRKX gene is expressed only in blood. Among the blood cell lineages, the PRKX gene is specifically expressed in macrophages and granulocytes. Antisense inhibition of PRKX expression blocked terminal development in both the leukemic HL-60 cells and normal peripheral blood monocytes, implying that PRKX is a key mediator of macrophage and granulocyte maturation. Using the HL-60 cell variant deficient in protein kinase C-β (PKC-β) and several stable PKC-β transfectants, we found that PRKX gene expression is under control of PKC-β; hence PRKX is likely to act downstream of this PKC isozyme in the same signal transduction pathway leading to macrophage maturation.
Resumo:
The GNAS1 gene encodes the α subunit of the guanine nucleotide-binding protein Gs, which couples signaling through peptide hormone receptors to cAMP generation. GNAS1 mutations underlie the hormone resistance syndrome pseudohypoparathyroidism type Ia (PHP-Ia), so the maternal inheritance displayed by PHP-Ia has raised suspicions that GNAS1 is imprinted. Despite this suggestion, in most tissues Gsα is biallelically encoded. In contrast, the large G protein XLαs, also encoded by GNAS1, is paternally derived. Because the inheritance of PHP-Ia predicts the existence of maternally, rather than paternally, expressed transcripts, we have investigated the allelic origin of other mRNAs derived from GNAS1. We find this gene to be remarkable in the complexity of its allele-specific regulation. Two upstream promoters, each associated with a large coding exon, lie only 11 kb apart, yet show opposite patterns of allele-specific methylation and monoallelic transcription. The more 5′ of these exons encodes the neuroendocrine secretory protein NESP55, which is expressed exclusively from the maternal allele. The NESP55 exon is 11 kb 5′ to the paternally expressed XLαs exon. The transcripts from these two promoters both splice onto GNAS1 exon 2, yet share no coding sequences. Despite their structural unrelatedness, the encoded proteins, of opposite allelic origin, both have been implicated in regulated secretion in neuroendocrine tissues. Remarkably, maternally (NESP55), paternally (XLαs), and biallelically (Gsα) derived proteins all are produced by different patterns of promoter use and alternative splicing of GNAS1, a gene showing simultaneous imprinting in both the paternal and maternal directions.
Resumo:
Estrogens influence the differentiation and maintenance of reproductive tissues and affect lipid metabolism and bone remodeling. Two estrogen receptors (ERs) have been identified to date, ERα and ERβ. We previously generated and studied knockout mice lacking estrogen receptor α and reported severe reproductive and behavioral phenotypes including complete infertility of both male and female mice and absence of breast tissue development. Here we describe the generation of mice lacking estrogen receptor β (ERβ −/−) by insertion of a neomycin resistance gene into exon 3 of the coding gene by using homologous recombination in embryonic stem cells. Mice lacking this receptor develop normally and are indistinguishable grossly and histologically as young adults from their littermates. RNA analysis and immunocytochemistry show that tissues from ERβ −/− mice lack normal ERβ RNA and protein. Breeding experiments with young, sexually mature females show that they are fertile and exhibit normal sexual behavior, but have fewer and smaller litters than wild-type mice. Superovulation experiments indicate that this reduction in fertility is the result of reduced ovarian efficiency. The mutant females have normal breast development and lactate normally. Young, sexually mature male mice show no overt abnormalities and reproduce normally. Older mutant males display signs of prostate and bladder hyperplasia. Our results indicate that ERβ is essential for normal ovulation efficiency but is not essential for female or male sexual differentiation, fertility, or lactation. Future experiments are required to determine the role of ERβ in bone and cardiovascular homeostasis.
Resumo:
Although neuronal synchronization has been shown to exist in primary motor cortex (MI), very little is known about its possible contribution to coding of movement. By using cross-correlation techniques from multi-neuron recordings in MI, we observed that activity of neurons commonly synchronized around the time of movement initiation. For some cell pairs, synchrony varied with direction in a manner not readily predicted by the firing of either neuron. Information theoretic analysis demonstrated quantitatively that synchrony provides information about movement direction beyond that expected by simple rate changes. Thus, MI neurons are not simply independent encoders of movement parameters but rather engage in mutual interactions that could potentially provide an additional coding dimension in cortex.
Resumo:
The zebrafish system offers many unique opportunities for the study of molecular biology. To date, only random mutagenesis, and not directed gene knockouts, have been demonstrated in this system. To more fully develop the potential of the zebrafish system, an approach to effectively inhibit the expression of any targeted gene in the developing zebrafish embryo has been developed. This approach uses a transient, cytoplasmic, T7 expression system, injected into the fertilized zebrafish egg to rapidly produce high levels of a ribozyme directed against the mRNA encoded by the targeted gene to inhibit its expression. In a demonstration of this strategy, expression of the recessive dominant zebrafish no tail gene was effectively inhibited by using this strategy to yield a phenotype identical to that resulting from a known defective mutation in this same gene. This, ribozyme-mediated, message deletion strategy may have use in determining the function of genetic coding sequences of unknown function.
Resumo:
Cardiomyopathy (CM) is a primary degenerative disease of myocardium and is traditionally categorized into hypertrophic and dilated CMs (HCM and DCM) according to its gross appearance. Cardiomyopathic hamster (CM hamster), a representative model of human hereditary CM, has HCM and DCM inbred sublines, both of which descend from the same ancestor. Herein we show that both HCM and DCM hamsters share a common defect in a gene for δ-sarcoglycan (δ-SG), the functional role of which is yet to be characterized. A breakpoint causing genomic deletion was found to be located at 6.1 kb 5′ upstream of the second exon of δ-SG gene, and its 5′ upstream region of more than 27.4 kb, including the authentic first exon of δ-SG gene, was deleted. This deletion included the major transcription initiation site, resulting in a deficiency of δ-SG transcripts with the consequent loss of δ-SG protein in all the CM hamsters, despite the fact that the protein coding region of δ-SG starting from the second exon was conserved in all the CM hamsters. We elucidated the molecular interaction of dystrophin-associated glycoproteins including δ-SG, by using an in vitro pull-down study and ligand overlay assay, which indicates the functional role of δ-SG in stabilizing sarcolemma. The present study not only identifies CM hamster as a valuable animal model for studying the function of δ-SG in vivo but also provides a genetic target for diagnosis and treatment of human CM.
Resumo:
A live, cold-passaged (cp) candidate vaccine virus, designated respiratory syncytial virus (RSV) B1 cp-52/2B5 (cp-52), replicated efficiently in Vero cells, but was found to be overattenuated for RSV-seronegative infants and children. Sequence analysis of reverse-transcription–PCR-amplified fragments of this mutant revealed a large deletion spanning most of the coding sequences for the small hydrophobic (SH) and attachment (G) proteins. Northern blot analysis of cp-52 detected multiple unique read-through mRNAs containing SH and G sequences, consistent with a deletion mutation spanning the SH:G gene junction. Immunological studies confirmed that an intact G glycoprotein was not produced by the cp-52 virus. Nonetheless, cp-52 was infectious and replicated to high titer in tissue culture despite the absence of the viral surface SH and G glycoproteins. Thus, our characterization of this negative-strand RNA virus identified a novel replication-competent deletion mutant lacking two of its three surface glycoproteins. The requirement of SH and G for efficient replication in vivo suggests that selective deletion of one or both of these RSV genes may provide an alternative or additive strategy for developing an optimally attenuated vaccine candidate.
Resumo:
We previously identified a novel nuclear RNA species derived from the preproenkephalin (PPE) gene. This transcript, which we have named PPEIA-3′ RNA, hybridizes with probes directed at a region of PPE intron A downstream of an alternative germ-cell transcription start site, but does not contain PPE protein coding sequences. We now report that estrogen treatment of ovariectomized rats increases the expression of conventional PPE heteronuclear RNA, and also induces the expression of PPEIA-3′ RNA, apparently in separate cell populations within the ventromedial nucleus of the hypothalamus. Further, we show that cells expressing PPEIA-3′ are found in several neuronal groups in the rat forebrain and brainstem, with a distinct topographical distribution. High densities of PPEIA-3′ containing cells are found in the reticular thalamic nucleus, the basal forebrain, the vestibular complex, the deep cerebellar nuclei, and the trapezoid body, a pattern that parallels the distribution of atypical nuclear RNAs described by other groups. These results suggest that this diverse neuronal population shares a common set of nuclear factors responsible for the expression and retention of this atypical RNA transcript. The implication of these results for cell-specific gene transcription and regulation in the brain and the possible relationship of PPEIA-3′ RNA and other atypical nuclear RNAs is discussed.
Resumo:
Photosystem II is a reaction center protein complex located in photosynthetic membranes of plants, algae, and cyanobacteria. Using light energy, photosystem II catalyzes the oxidation of water and the reduction of plastoquinone, resulting in the release of molecular oxygen. A key component of photosystem II is cytochrome b559, a membrane-embedded heme protein with an unknown function. The cytochrome is unusual in that a heme links two separate polypeptide subunits, α and β, either as a heterodimer (αβ) or as two homodimers (α2 and β2). To determine the structural organization of cytochrome b559 in the membrane, we used site-directed mutagenesis to fuse the coding regions of the two respective genes in the cyanobacterium Synechocystis sp. PCC 6803. In this construction, the C terminus of the α subunit (9 kDa) is attached to the N terminus of the β subunit (5 kDa) to form a 14-kDa αβ fusion protein that is predicted to have two membrane-spanning α-helices with antiparallel orientations. Cells containing the αβ fusion protein grow photoautotrophically and assemble functional photosystem II complexes. Optical spectroscopy shows that the αβ fusion protein binds heme and is incorporated into photosystem II. These data support a structural model of cytochrome b559 in which one heme is coordinated to an α2 homodimer and a second heme is coordinated to a β2 homodimer. In this model, each photosystem II complex contains two cytochrome b559 hemes, with the α2 heme located near the stromal side of the membrane and the β2 heme located near the lumenal side.
Resumo:
5′-End fragments of two genes encoding plastid-localized acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) of wheat (Triticum aestivum) were cloned and sequenced. The sequences of the two genes, Acc-1,1 and Acc-1,2, are 89% identical. Their exon sequences are 98% identical. The amino acid sequence of the biotin carboxylase domain encoded by Acc-1,1 and Acc-1,2 is 93% identical with the maize plastid ACCase but only 80–84% identical with the cytosolic ACCases from other plants and from wheat. Four overlapping fragments of cDNA covering the entire coding region were cloned by PCR and sequenced. The wheat plastid ACCase ORF contains 2,311 amino acids with a predicted molecular mass of 255 kDa. A putative transit peptide is present at the N terminus. Comparison of the genomic and cDNA sequences revealed introns at conserved sites found in the genes of other plant multifunctional ACCases, including two introns absent from the wheat cytosolic ACCase genes. Transcription start sites of the plastid ACCase genes were estimated from the longest cDNA clones obtained by 5′-RACE (rapid amplification of cDNA ends). The untranslated leader sequence encoded by the Acc-1 genes is at least 130–170 nucleotides long and is interrupted by an intron. Southern analysis indicates the presence of only one copy of the gene in each ancestral chromosome set. The gene maps near the telomere on the short arm of chromosomes 2A, 2B, and 2D. Identification of three different cDNAs, two corresponding to genes Acc-1,1 and Acc-1,2, indicates that all three genes are transcriptionally active.
Resumo:
Previous complementation and mapping of mutations that change the usual yellow color of the Zygomycete Phycomyces blakesleeanus to white or red led to the definition of two structural genes for carotene biosynthesis. We have cloned one of these genes, carRA, by taking advantage of its close linkage to the other, carB, responsible for phytoene dehydrogenase. The sequences of the wild type and six mutants have been established, compared with sequences in other organisms, and correlated with the mutant phenotypes. The carRA and carB coding sequences are separated by 1,381 untranslated nucleotides and are divergently transcribed. Gene carRA contains separate domains for two enzymes, lycopene cyclase and phytoene synthase, and regulates the overall activity of the pathway and its response to physical and chemical stimuli from the environment. The lycopene cyclase domain of carRA derived from a duplication of a gene from a common ancestor of fungi and Brevibacterium linens; the phytoene synthase domain is similar to the phytoene and squalene synthases of many organisms; but the regulatory functions appear to be specific to Phycomyces.
Resumo:
Escherichia coli mRNA translation is facilitated by sequences upstream and downstream of the initiation codon, called Shine–Dalgarno (SD) and downstream box (DB) sequences, respectively. In E.coli enhancing the complementarity between the DB sequences and the 16S rRNA penultimate stem resulted in increased protein accumulation without a significant affect on mRNA stability. The objective of this study was to test whether enhancing the complementarity of plastid mRNAs downstream of the AUG (downstream sequence or DS) with the 16S rRNA penultimate stem (anti-DS or ADS region) enhances protein accumulation. The test system was the tobacco plastid rRNA operon promoter fused with the E.coli phage T7 gene 10 (T7g10) 5′-untranslated region (5′-UTR) and DB region. Translation efficiency was tested by measuring neomycin phosphotransferase (NPTII) accumulation in tobacco chloroplasts. We report here that the phage T7g10 5′-UTR and DB region promotes accumulation of NPTII up to ∼16% of total soluble leaf protein (TSP). Enhanced mRNA stability and an improved NPTII yield (∼23% of TSP) was obtained from a construct in which the T7g10 5′-UTR was linked with the NPTII coding region via a NheI site. However, replacing the T7g10 DB region with the plastid DS sequence reduced NPTII and mRNA levels to 0.16 and 28%, respectively. Reduced NPTII accumulation is in part due to accelerated mRNA turnover.
Resumo:
We present a method which allows the isolation of fragments from genes coding for homologous proteins via PCR when only one block of conserved amino acids is available. Sets of degenerated primers are defined by reverse translation of the conserved amino acids such that each set contains not more than 128 different sequences. The second primer binding site is provided by a special cassette that is designed such that it does not allow binding of the second primer prior to being copied by DNA synthesis. The cassette is ligated to partially-digested chromosomal DNA. The second primer is biotinylated to allow elimination of PCR products carrying degenerated primers on both sides via streptavidin binding. Fragments obtained after amplification and enrichment are cloned and sequenced. The feasibility of this method was demonstrated in a model experiment, where degenerated primers were deduced from six conserved amino acids within the family of homologs to the Escherichia coli Vsr protein.
Resumo:
c-Maf is a bZip transcription factor expressed in developmental and cellular differentiation processes. Recently, a c-maf knockout mouse model, showing abnormal lens development, has been reported. In order to study the regulation mechanisms of c-maf gene expression during the differentiation process we have cloned and functionally characterized the rat c-maf (maf-2) gene. The rat c-maf gene is an intronless gene, covering a length of 3.5 kb. Transient transfection analysis of the 5′-flanking region of the c-maf gene using luciferase as the reporter gene shows that Pax6, a master transcription factor for lens development, strongly activates the c-maf promoter construct. Endogenous c-maf is also activated by the Pax6 expression vector. Electrophoresis mobility shift assay and DNase I footprinting analysis show that at least three Pax6-binding sites are located in the 5′-flanking and 5′-non-coding regions of the rat c-maf gene. The c-maf gene was also markedly activated by its own product, c-Maf, through the MARE (Maf recognition element), suggesting that a positive autoregulatory mechanism controls this gene. In situ hybridization histochemical detection of Pax6 and c-Maf in the E14 lens showed that both mRNAs are expressed in the lens equator where lens epithelial cells are differentiating to lens fiber cells. These results suggest that a Pax6/c-Maf transcription factor cascade is working in lens development.