157 resultados para ARABIDOPSIS-THALIANA L


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two mutations have been found in a gene (NRT2) of Arabidopsis thaliana that specifically impair constitutive, high-affinity nitrate uptake. These mutants were selected for resistance to 0.1 mM chlorate in the absence of nitrate. Progency from one of the backcrossed mutants showed no constitutive uptake of nitrate below 0.5 mM at pH 7.0 in liquid culture (that is, within 30 min of initial exposure to nitrate). All other uptake activities measured (high-affinity phosphate and sulfate uptake, inducible high-affinity nitrate uptake, and constitutive low-affinity nitrate uptake) were present or nearly normal in the backcrossed mutant. Electrophysiological analysis of individual root cells showed that the nrt2 mutant showed little response to 0.25 mM of nitrate, whereas NRT2 wild-type cells showed an initial depolarization followed by recovery. At 10 mM of nitrate both the mutant and wild-type cells displayed similar, strong electrical responses. These results indicate that NRT2 is a critical and perhaps necessary gene for constitutive, high-affinity nitrate uptake in Arabidopsis, but not for inducible, high-affinity nor constitutive, low-affinity nitrate uptake. Thus, these systems are genetically distinct.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several recent reports indicate that mobile elements are frequently found in and flanking many wild-type plant genes. To determine the extent of this association, we performed computer-based systematic searches to identify mobile elements in the genes of two "model" plants, Oryza sativa (domesticated rice) and Arabidopsis thaliana. Whereas 32 common sequences belonging to nine putative mobile element families were found in the noncoding regions of rice genes, none were found in Arabidopsis genes. Five of the nine families (Gaijin, Castaway, Ditto, Wanderer, and Explorer) are first described in this report, while the other four were described previously (Tourist, Stowaway, p-SINE1, and Amy/LTP). Sequence similarity, structural similarity, and documentation of past mobility strongly suggests that many of the rice common sequences are bona fide mobile elements. Members of four of the new rice mobile element families are similar in some respects to members of the previously identified inverted-repeat element families, Tourist and Stowaway. Together these elements are the most prevalent type of transposons found in the rice genes surveyed and form a unique collection of inverted-repeat transposons we refer to as miniature inverted-repeat transposable elements or MITEs. The sequence and structure of MITEs are clearly distinct from short or long interspersed nuclear elements (SINEs or LINEs), the most common transposable elements associated with mammalian nuclear genes. Mobile elements, therefore, are associated with both animal and plant genes, but the identity of these elements is strikingly different.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In many plants, osmotic stress induces a rapid accumulation of proline through de novo synthesis from glutamate. This response is thought to play a pivotal role in osmotic stress tolerance [Kishor, P. B. K., Hong, Z., Miao, G.-H., Hu, C.-A. A. and Verma, D. P. S. (1995) Plant Physiol. 108, 1387-1394]. During recovery from osmotic stress, accumulated proline is rapidly oxidized to glutamate and the first step of this process is catalyzed by proline oxidase. We have isolated a full-length cDNA from Arabidopsis thaliana, At-POX, which maps to a single locus on chromosome 3 and that encodes a predicted polypeptide of 499 amino acids showing significant similarity with proline oxidase sequences from Drosophila and Saccharomyces cerevisiae (55.5% and 45.1%, respectively). The predicted location of the encoded polypeptide is the inner mitochondrial membrane. RNA gel blot analysis revealed that At-POX mRNA levels declined rapidly upon osmotic stress and this decline preceded proline accumulation. On the other hand, At-POX mRNA levels rapidly increased during recovery. Free proline, exogenously added to plants, was found to be an effective inducer of At-POX expression; indeed, At-POX was highly expressed in flowers and mature seeds where the proline level is higher relative to other organs of Arabidopsis. Our results indicate that stress- and developmentally derived signals interact to determine proline homeostasis in Arabidopsis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The expression of the jellyfish green fluorescent protein (GFP) in plants was analyzed by transient expression in protoplasts from Nicotiana tabacum, Arabidopsis thaliana, Hordeum vulgare, and Zea mays. Expression of GFP was only observed with a mutated cDNA, from which a recently described cryptic splice site had been removed. However, detectable levels of green fluorescence were only emitted from a small number of protoplasts. Therefore, other mutations in the GFP cDNA leading to single-amino acid exchanges in the chromophore region, which had been previously studied in Escherichia coli, were tested in order to improve the sensitivity of this marker protein. Of the mutations tested so far, the exchange of GFP amino acid tyrosine 66 to histidine (Y66H) led to detection of blue fluorescence in plant protoplasts, while the exchange of amino acid serine 65 to cysteine (S65C) and threonine (S65T) increased the intensity of green fluorescence drastically, thereby significantly raising the detection level for GFP. For GFP S65C, the detectable number of green fluorescing tobacco (BY-2) protoplasts was raised up to 19-fold, while the fluorimetricly determined fluorescence was raised by at least 2 orders of magnitude.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The TATA box-binding protein (TBP) is required by all three eukaryotic RNA polymerases for correct initiation of transcription of ribosomal, messenger, small nuclear, and transfer RNAs. The cocrystal structure of the C-terminal/core region of human TBP complexed with the TATA element of the adenovirus major late promoter has been determined at 1.9 angstroms resolution. Structural and functional analyses of the protein-DNA complex are presented, with a detailed comparison to our 1.9-angstroms resolution structure of Arabidopsis thaliana TBP2 bound to the same TATA box.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The yeast Saccharomyces cerevisiae has two separate systems for zinc uptake. One system has high affinity for substrate and is induced in zinc-deficient cells. The second system has lower affinity and is not highly regulated by zinc status. The ZRT1 gene encodes the transporter for the high-affinity system, called Zrt1p. The predicted amino acid sequence of Zrt1p is similar to that of Irt1p, a probable Fe(II) transporter from Arabidopsis thaliana. Like Irt1p, Zrt1p contains eight potential transmembrane domains and a possible metal-binding domain. Consistent with the proposed role of ZRT1 in zinc uptake, overexpressing this gene increased high-affinity uptake activity, whereas disrupting it eliminated that activity and resulted in poor growth of the mutant in zinc-limited media. Furthermore, ZRT1 mRNA levels and uptake activity were closely correlated, as was zinc-limited induction of a ZRT1-lacZ fusion. These results suggest that ZRT1 is regulated at the transcriptional level by the intracellular concentration of zinc. ZRT1 is an additional member of a growing family of metal transport proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We show that the higher plant Arabidopsis thaliana has a serine-arginine-rich (SR) protein family whose members contain a phosphoepitope shared by the animal SR family of splicing factors. In addition, we report the cloning and characterization of a cDNA encoding a higher-plant SR protein from Arabidopsis, SR1, which has striking sequence and structural homology to the human splicing factor SF2/ASF. Similar to SF2/ASF, the plant SR1 protein promotes splice site switching in mammalian nuclear extracts. A novel feature of the Arabidopsis SR protein is a C-terminal domain containing a high concentration of proline, serine, and lysine residues (PSK domain), a composition reminiscent of histones. This domain includes a putative phosphorylation site for the mitotic kinase cyclin/p34cdc2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In Arabidopsis thaliana, blocking histidine biosynthesis with a specific inhibitor of imidazoleglycerol-phosphate dehydratase caused increased expression of eight genes involved in the biosynthesis of aromatic amino acids, histidine, lysine, and purines. A decrease in expression of glutamine synthetase was also observed. Addition of histidine eliminated the gene-regulating effects of the inhibitor, demonstrating that the changes in gene expression resulted from histidine-pathway blockage. These results show that plants are capable of cross-pathway metabolic regulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In aerobic organisms, protection against oxidative damage involves the combined action of highly specialized antioxidant enzymes, such as superoxide dismutase (SOD) and catalase. Here we describe the isolation and characterization of another gene in the yeast Saccharomyces cerevisiae that plays a critical role in detoxification of reactive oxygen species. This gene, named ATX1, was originally isolated by its ability to suppress oxygen toxicity in yeast lacking SOD. ATX1 encodes a 8.2-kDa polypeptide exhibiting significant similarity and identity to various bacterial metal transporters. Potential ATX1 homologues were also identified in multicellular eukaryotes, including the plants Arabidopsis thaliana and Oryza sativa and the nematode Caenorhabditis elegans. In yeast cells, ATX1 evidently acts in the transport and/or partitioning of copper, and this role in copper homeostasis appears to be directly relevant to the ATX1 suppression of oxygen toxicity: ATX1 was incapable of compensating for SOD when cells were depleted of exogenous copper. Strains containing a deletion in the chromosomal ATX1 locus were generated. Loss of ATX1 function rendered both mutant and wild-type SOD strains hypersensitive toward paraquat (a generator of superoxide anion) and was also associated with an increased sensitivity toward hydrogen peroxide. Hence, ATX1 protects cells against the toxicity of both superoxide anion and hydrogen peroxide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Higher plant reproduction is unique because two cells are fertilized in the haploid female gametophyte. Egg and sperm nuclei fuse to form the embryo. A second sperm nucleus fuses with the central cell nucleus that replicates to generate the endosperm, a tissue that supports embryo development. To understand mechanisms that initiate reproduction, we isolated a mutation in Arabidopsis, f644, that allows for replication of the central cell and subsequent endosperm development without fertilization. When mutant f644 egg and central cells are fertilized by wild-type sperm, embryo development is inhibited, and endosperm is overproduced. By using a map-based strategy, we cloned and sequenced the F644 gene and showed that it encodes a SET-domain polycomb protein. Subsequently, we found that F644 is identical to MEDEA (MEA), a gene whose maternal-derived allele is required for embryogenesis [Grossniklaus, U., Vielle-Calzada, J.-P., Hoeppner, M. A. & Gagliano, W. B. (1998) Science 280, 446–450]. Together, these results reveal functions for plant polycomb proteins in the suppression of central cell proliferation and endosperm development. We discuss models to explain how polycomb proteins function to suppress endosperm and promote embryo development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ETR1 represents a prototypical ethylene receptor. Homologues of ETR1 have been identified in Arabidopsis as well as in other plant species, indicating that ethylene perception involves a family of receptors and that the mechanism of ethylene perception is conserved in plants. The amino-terminal half of ETR1 contains a hydrophobic domain responsible for ethylene binding and membrane localization. The carboxyl-terminal half of the polypeptide contains domains with homology to histidine kinases and response regulators, signaling motifs originally identified in bacteria. The putative histidine kinase domain of ETR1 was expressed in yeast as a fusion protein with glutathione S-transferase and affinity purified. Autophosphorylation of the purified fusion protein was observed on incubation with radiolabeled ATP. The incorporated phosphate was resistant to treatment with 3 M NaOH, but was sensitive to 1 M HCl, consistent with phosphorylation of histidine. Autophosphorylation was abolished by mutations that eliminated either the presumptive site of phosphorylation (His-353) or putative catalytic residues within the kinase domain. Truncations were used to delineate the region required for histidine kinase activity. An examination of cation requirements indicated that ETR1 requires Mn2+ for autophosphorylation. These results demonstrate that higher plants contain proteins with histidine kinase activity. Furthermore, these results indicate that aspects of ethylene signaling may be regulated by changes in histidine kinase activity of the receptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arabidopsis cyt1 mutants have a complex phenotype indicative of a severe defect in cell wall biogenesis. Mutant embryos arrest as wide, heart-shaped structures characterized by ectopic accumulation of callose and the occurrence of incomplete cell walls. Texture and thickness of the cell walls are irregular, and unesterified pectins show an abnormally diffuse distribution. To determine the molecular basis of these defects, we have cloned the CYT1 gene by a map-based approach and found that it encodes mannose-1-phosphate guanylyltransferase. A weak mutation in the same gene, called vtc1, has previously been identified on the basis of ozone sensitivity due to reduced levels of ascorbic acid. Mutant cyt1 embryos are deficient in N-glycosylation and have an altered composition of cell wall polysaccharides. Most notably, they show a 5-fold decrease in cellulose content. Characteristic aspects of the cyt1 phenotype, including radial swelling and accumulation of callose, can be mimicked with the inhibitor of N-glycosylation, tunicamycin. Our results suggest that N-glycosylation is required for cellulose biosynthesis and that a deficiency in this process can account for most phenotypic features of cyt1 embryos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structures of glycans N-linked to Arabidopsis proteins have been fully identified. From immuno- and affinodetections on blots, chromatography, nuclear magnetic resonance, and glycosidase sequencing data, we show that Arabidopsis proteins are N-glycosylated by high-mannose-type N-glycans from Man5GlcNAc2 to Man9GlcNAc2, and by xylose- and fucose (Fuc)-containing oligosaccharides. However, complex biantenary structures containing the terminal Lewis a epitope recently reported in the literature (A.-C. Fitchette-Lainé, V. Gomord, M. Cabanes, J.-C. Michalski, M. Saint Macary, B. Foucher, B. Cavalier, C. Hawes, P. Lerouge, and L. Faye [1997] Plant J 12: 1411–1417) were not detected. A similar study was done on the Arabidopsis mur1 mutant, which is affected in the biosynthesis of l-Fuc. In this mutant, one-third of the Fuc residues of the xyloglucan has been reported to be replaced by l-galactose (Gal) (E. Zablackis, W.S. York, M. Pauly, S. Hantus, W.D. Reiter, C.C.S. Chapple, P. Albersheim, and A. Darvill [1996] Science 272: 1808–1810). N-linked glycans from the mutant were identified and their structures were compared with those isolated from the wild-type plants. In about 95% of all N-linked glycans from the mur1 plant, l-Fuc residues were absent and were not replaced by another monosaccharide. However, in the remaining 5%, l-Fuc was found to be replaced by a hexose residue. From nuclear magnetic resonance and mass spectrometry data of the mur1 N-glycans, and by analogy with data reported on mur1 xyloglucan, this subpopulation of N-linked glycans was proposed to be l-Gal-containing N-glycans resulting from the replacement of l-Fuc by l-Gal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we investigated the kinetics of the gravitropic response of the Arabidopsis mutant rgr1 (reduced root gravitropism). Although the rate of curvature in rgr1, which is allelic to axr4, was smaller than in the wild type (ecotype Wassilewskija), curvature was initiated in the same region of the root, the distal elongation zone. The time lag for the response was unaffected in the mutant; however, the gravitropic response of rgr1 contained a feature not found in the wild type: when roots growing along the surface of an agar plate were gravistimulated, there was often an upward curvature that initiated in the central elongation zone. Because this response was dependent on the tactile environment of the root, it most likely resulted from the superposition of the waving/coiling phenomenon onto the gravitropic response. We found that the frequency of the waving pattern and circumnutation, a cyclic endogenous pattern of root growth, was the same in rgr1 and in the wild type, so the waving/coiling phenomenon is likely governed by circumnutation patterns. The amplitudes of these oscillations may then be selectively amplified by tactile stimulation to provide a directional preference to the slanting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Higher plants synthesize 24-methyl sterols and 24-ethyl sterols in defined proportions. As a first step in investigating the physiological function of this balance, an Arabidopsis cDNA encoding an S-adenosyl-l-methionine 24-methylene lophenol-C241-methyltransferase, the typical plant enzyme responsible for the production of 24-ethyl sterols, was expressed in tobacco (Nicotiana tabacum L.) under the control of a constitutive promoter. Transgenic plants displayed a novel 24-alkyl-Δ5-sterol profile: the ratio of 24-methyl cholesterol to sitosterol, which is close to 1 in the wild type, decreased dramatically to values ranging from 0.01 to 0.31. In succeeding generations of transgenic tobacco, a high S-adenosyl-l-methionine 24-methylene lophenol-C241-methyltransferase enzyme activity and, consequently, a low ratio of 24-methyl cholesterol to sitosterol, was associated with reduced growth compared with the wild type. However, this new morphological phenotype appeared only below the threshold ratio of 24-methyl cholesterol to sitosterol of approximately 0.1. Because the size of cells was unchanged in small, transgenic plants, we hypothesize that a radical decrease of 24-methyl cholesterol and/or a concomitant increase of sitosterol would be responsible for a change in cell division through as-yet unknown mechanisms.